ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/oopse.tex
Revision: 1068
Committed: Wed Feb 25 21:48:44 2004 UTC (20 years, 4 months ago) by mmeineke
Content type: application/x-tex
File size: 59248 byte(s)
Log Message:
halfway through revisions in OOPSE

File Contents

# User Rev Content
1 mmeineke 1045 \chapter{\label{chapt:oopse}OOPSE: AN OPEN SOURCE OBJECT-ORIENTED PARALLEL SIMULATION ENGINE FOR MOLECULAR DYNAMICS}
2 mmeineke 1044
3    
4    
5 mmeineke 1045 %% \begin{abstract}
6     %% We detail the capabilities of a new open-source parallel simulation
7     %% package ({\sc oopse}) that can perform molecular dynamics simulations
8     %% on atom types that are missing from other popular packages. In
9     %% particular, {\sc oopse} is capable of performing orientational
10     %% dynamics on dipolar systems, and it can handle simulations of metallic
11     %% systems using the embedded atom method ({\sc eam}).
12     %% \end{abstract}
13 mmeineke 1044
14 mmeineke 1045 \lstset{language=C,frame=TB,basicstyle=\small,basicstyle=\ttfamily, %
15     xleftmargin=0.5in, xrightmargin=0.5in,captionpos=b, %
16     abovecaptionskip=0.5cm, belowcaptionskip=0.5cm}
17 mmeineke 1044
18 mmeineke 1051 \section{\label{oopseSec:foreword}Foreword}
19 mmeineke 1044
20 mmeineke 1051 In this chapter, I present and detail the capabilities of the open
21     source simulation package {\sc oopse}. It is important to note, that a
22     simulation package of this size and scope would not have been possible
23     without the collaborative efforts of my colleagues: Charles
24     F.~Vardeman II, Teng Lin, Christopher J.~Fennell and J.~Daniel
25 mmeineke 1068 Gezelter. Although my contributions to {\sc oopse} are major,
26     consideration of my work apart from the others would not give a
27 mmeineke 1051 complete description to the package's capabilities. As such, all
28     contributions to {\sc oopse} to date are presented in this chapter.
29 mmeineke 1044
30 mmeineke 1068 Charles Vardeman is responsible for the parallelization of the long
31     range forces in {\sc oopse} (Sec.~\ref{oopseSec:parallelization}) as
32     well as the inclusion of the embedded-atom potential for transition
33     metals (Sec.~\ref{oopseSec:eam}). Teng Lin's contributions include
34     refinement of the periodic boundary conditions
35 mmeineke 1054 (Sec.~\ref{oopseSec:pbc}), the z-constraint method
36     (Sec.~\ref{oopseSec:zcons}), refinement of the property analysis
37     programs (Sec.~\ref{oopseSec:props}), and development in the extended
38 mmeineke 1068 system integrators (Sec.~\ref{oopseSec:noseHooverThermo}). Christopher
39 mmeineke 1054 Fennell worked on the symplectic integrator
40     (Sec.~\ref{oopseSec:integrate}) and the refinement of the {\sc ssd}
41     water model (Sec.~\ref{oopseSec:SSD}). Daniel Gezelter lent his
42     talents in the development of the extended system integrators
43     (Sec.~\ref{oopseSec:noseHooverThermo}) as well as giving general
44     direction and oversight to the entire project. My responsibilities
45     covered the creation and specification of {\sc bass}
46     (Sec.~\ref{oopseSec:IOfiles}), the original development of the single
47     processor version of {\sc oopse}, contributions to the extended state
48     integrators (Sec.~\ref{oopseSec:noseHooverThermo}), the implementation
49     of the Lennard-Jones (Sec.~\ref{sec:LJPot}) and {\sc duff}
50     (Sec.~\ref{oopseSec:DUFF}) force fields, and initial implementation of
51     the property analysis (Sec.~\ref{oopseSec:props}) and system
52 mmeineke 1068 initialization (Sec.~\ref{oopseSec:initCoords}) utility programs. {\sc
53     oopse}, like many other Molecular Dynamics programs, is a work in
54     progress, and will continue to be so for many graduate student
55     lifetimes.
56 mmeineke 1044
57 mmeineke 1051 \section{\label{sec:intro}Introduction}
58 mmeineke 1044
59 mmeineke 1051 When choosing to simulate a chemical system with molecular dynamics,
60     there are a variety of options available. For simple systems, one
61     might consider writing one's own programming code. However, as systems
62     grow larger and more complex, building and maintaining code for the
63     simulations becomes a time consuming task. In such cases it is usually
64 mmeineke 1054 more convenient for a researcher to turn to pre-existing simulation
65 mmeineke 1051 packages. These packages, such as {\sc amber}\cite{pearlman:1995} and
66     {\sc charmm}\cite{Brooks83}, provide powerful tools for researchers to
67     conduct simulations of their systems without spending their time
68     developing a code base to conduct their research. This then frees them
69 mmeineke 1054 to perhaps explore experimental analogues to their models.
70 mmeineke 1044
71 mmeineke 1051 Despite their utility, problems with these packages arise when
72     researchers try to develop techniques or energetic models that the
73 mmeineke 1068 code was not originally designed to simulate. Examples of uncommonly
74 mmeineke 1051 implemented techniques and energetics include; dipole-dipole
75 mmeineke 1054 interactions, rigid body dynamics, and metallic embedded
76 mmeineke 1051 potentials. When faced with these obstacles, a researcher must either
77     develop their own code or license and extend one of the commercial
78     packages. What we have elected to do, is develop a package of
79     simulation code capable of implementing the types of models upon which
80     our research is based.
81 mmeineke 1044
82 mmeineke 1068 In developing {\sc oopse}, we have adhered to the precepts of Open
83     Source development, and are releasing our source code with a
84     permissive license. It is our intent that by doing so, other
85     researchers might benefit from our work, and add their own
86     contributions to the package. The license under which {\sc oopse} is
87     distributed allows any researcher to download and modify the source
88     code for their own use. In this way further development of {\sc oopse}
89     is not limited to only the models of interest to ourselves, but also
90     those of the community of scientists who contribute back to the
91     project.
92 mmeineke 1044
93 mmeineke 1054 We have structured this chapter to first discuss the empirical energy
94 mmeineke 1051 functions that {\sc oopse } implements in
95 mmeineke 1054 Sec.~\ref{oopseSec:empiricalEnergy}. Following that is a discussion of
96 mmeineke 1051 the various input and output files associated with the package
97 mmeineke 1068 (Sec.~\ref{oopseSec:IOfiles}). Sec.~\ref{oopseSec:mechanics}
98 mmeineke 1051 elucidates the various Molecular Dynamics algorithms {\sc oopse}
99 mmeineke 1054 implements in the integration of the Newtonian equations of
100 mmeineke 1051 motion. Basic analysis of the trajectories obtained from the
101     simulation is discussed in Sec.~\ref{oopseSec:props}. Program design
102 mmeineke 1068 considerations are presented in Sec.~\ref{oopseSec:design}. And
103     lastly, Sec.~\ref{oopseSec:conclusion} concludes the chapter.
104 mmeineke 1044
105 mmeineke 1051 \section{\label{oopseSec:empiricalEnergy}The Empirical Energy Functions}
106    
107     \subsection{\label{oopseSec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
108    
109 mmeineke 1044 The basic unit of an {\sc oopse} simulation is the atom. The
110     parameters describing the atom are generalized to make the atom as
111     flexible a representation as possible. They may represent specific
112     atoms of an element, or be used for collections of atoms such as
113     methyl and carbonyl groups. The atoms are also capable of having
114     directional components associated with them (\emph{e.g.}~permanent
115 mmeineke 1054 dipoles). Charges, permanent dipoles, and Lennard-Jones parameters for
116 mmeineke 1068 a given atom type are set in the force field parameter files.
117 mmeineke 1044
118 mmeineke 1054 \begin{lstlisting}[float,caption={[Specifier for molecules and atoms] A sample specification of an Ar molecule},label=sch:AtmMole]
119 mmeineke 1044 molecule{
120     name = "Ar";
121     nAtoms = 1;
122     atom[0]{
123     type="Ar";
124     position( 0.0, 0.0, 0.0 );
125     }
126     }
127     \end{lstlisting}
128    
129 mmeineke 1045
130 mmeineke 1054 Atoms can be collected into secondary structures such as rigid bodies
131 mmeineke 1044 or molecules. The molecule is a way for {\sc oopse} to keep track of
132     the atoms in a simulation in logical manner. Molecular units store the
133 mmeineke 1054 identities of all the atoms and rigid bodies associated with
134     themselves, and are responsible for the evaluation of their own
135     internal interactions (\emph{i.e.}~bonds, bends, and torsions). Scheme
136 mmeineke 1068 \ref{sch:AtmMole} shows how one creates a molecule in a ``model'' or
137 mmeineke 1054 \texttt{.mdl} file. The position of the atoms given in the
138     declaration are relative to the origin of the molecule, and is used
139     when creating a system containing the molecule.
140 mmeineke 1044
141     As stated previously, one of the features that sets {\sc oopse} apart
142     from most of the current molecular simulation packages is the ability
143     to handle rigid body dynamics. Rigid bodies are non-spherical
144     particles or collections of particles that have a constant internal
145     potential and move collectively.\cite{Goldstein01} They are not
146 mmeineke 1068 included in most simulation packages because of the algorithmic
147     complexity involved in propagating orientational degrees of
148     freedom. Until recently, integrators which propagate orientational
149     motion have been much worse than those available for translational
150     motion.
151 mmeineke 1044
152     Moving a rigid body involves determination of both the force and
153     torque applied by the surroundings, which directly affect the
154     translational and rotational motion in turn. In order to accumulate
155     the total force on a rigid body, the external forces and torques must
156     first be calculated for all the internal particles. The total force on
157     the rigid body is simply the sum of these external forces.
158     Accumulation of the total torque on the rigid body is more complex
159 mmeineke 1068 than the force because the torque is applied to the center of mass of
160     the rigid body. The torque on rigid body $i$ is
161 mmeineke 1044 \begin{equation}
162     \boldsymbol{\tau}_i=
163 mmeineke 1068 \sum_{a}\biggl[(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia}
164     + \boldsymbol{\tau}_{ia}\biggr]
165 mmeineke 1044 \label{eq:torqueAccumulate}
166     \end{equation}
167     where $\boldsymbol{\tau}_i$ and $\mathbf{r}_i$ are the torque on and
168     position of the center of mass respectively, while $\mathbf{f}_{ia}$,
169     $\mathbf{r}_{ia}$, and $\boldsymbol{\tau}_{ia}$ are the force on,
170     position of, and torque on the component particles of the rigid body.
171    
172     The summation of the total torque is done in the body fixed axis of
173 mmeineke 1068 each rigid body. In order to move between the space fixed and body
174 mmeineke 1044 fixed coordinate axes, parameters describing the orientation must be
175     maintained for each rigid body. At a minimum, the rotation matrix
176     (\textbf{A}) can be described by the three Euler angles ($\phi,
177     \theta,$ and $\psi$), where the elements of \textbf{A} are composed of
178     trigonometric operations involving $\phi, \theta,$ and
179     $\psi$.\cite{Goldstein01} In order to avoid numerical instabilities
180     inherent in using the Euler angles, the four parameter ``quaternion''
181     scheme is often used. The elements of \textbf{A} can be expressed as
182     arithmetic operations involving the four quaternions ($q_0, q_1, q_2,$
183     and $q_3$).\cite{allen87:csl} Use of quaternions also leads to
184     performance enhancements, particularly for very small
185     systems.\cite{Evans77}
186    
187     {\sc oopse} utilizes a relatively new scheme that propagates the
188 mmeineke 1068 entire nine parameter rotation matrix. Further discussion
189 mmeineke 1054 on this choice can be found in Sec.~\ref{oopseSec:integrate}. An example
190     definition of a rigid body can be seen in Scheme
191 mmeineke 1044 \ref{sch:rigidBody}. The positions in the atom definitions are the
192     placements of the atoms relative to the origin of the rigid body,
193     which itself has a position relative to the origin of the molecule.
194    
195 mmeineke 1045 \begin{lstlisting}[float,caption={[Defining rigid bodies]A sample definition of a rigid body},label={sch:rigidBody}]
196 mmeineke 1044 molecule{
197     name = "TIP3P_water";
198     nRigidBodies = 1;
199     rigidBody[0]{
200     nAtoms = 3;
201     atom[0]{
202     type = "O_TIP3P";
203     position( 0.0, 0.0, -0.06556 );
204     }
205     atom[1]{
206     type = "H_TIP3P";
207     position( 0.0, 0.75695, 0.52032 );
208     }
209     atom[2]{
210     type = "H_TIP3P";
211     position( 0.0, -0.75695, 0.52032 );
212     }
213     position( 0.0, 0.0, 0.0 );
214     orientation( 0.0, 0.0, 1.0 );
215     }
216     }
217     \end{lstlisting}
218    
219 mmeineke 1054 \subsection{\label{sec:LJPot}The Lennard Jones Force Field}
220 mmeineke 1044
221     The most basic force field implemented in {\sc oopse} is the
222 mmeineke 1054 Lennard-Jones force field, which mimics the van der Waals interaction at
223 mmeineke 1044 long distances, and uses an empirical repulsion at short
224     distances. The Lennard-Jones potential is given by:
225     \begin{equation}
226     V_{\text{LJ}}(r_{ij}) =
227     4\epsilon_{ij} \biggl[
228     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
229     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
230     \biggr]
231     \label{eq:lennardJonesPot}
232     \end{equation}
233     Where $r_{ij}$ is the distance between particles $i$ and $j$,
234     $\sigma_{ij}$ scales the length of the interaction, and
235     $\epsilon_{ij}$ scales the well depth of the potential. Scheme
236 mmeineke 1054 \ref{sch:LJFF} gives and example \texttt{.bass} file that
237     sets up a system of 108 Ar particles to be simulated using the
238     Lennard-Jones force field.
239 mmeineke 1044
240 mmeineke 1045 \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones force field] A sample system using the Lennard-Jones force field.},label={sch:LJFF}]
241 mmeineke 1044
242     #include "argon.mdl"
243    
244     nComponents = 1;
245     component{
246     type = "Ar";
247     nMol = 108;
248     }
249    
250     initialConfig = "./argon.init";
251    
252     forceField = "LJ";
253     \end{lstlisting}
254    
255     Because this potential is calculated between all pairs, the force
256     evaluation can become computationally expensive for large systems. To
257     keep the pair evaluations to a manageable number, {\sc oopse} employs
258 mmeineke 1068 a cut-off radius.\cite{allen87:csl} The cutoff radius can either be
259     specified in the \texttt{.bass} file, or left as its default value of
260 mmeineke 1044 $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest Lennard-Jones
261     length parameter present in the simulation. Truncating the calculation
262     at $r_{\text{cut}}$ introduces a discontinuity into the potential
263 mmeineke 1068 energy and the force. To offset this discontinuity in the potential,
264     the energy value at $r_{\text{cut}}$ is subtracted from the
265     potential. This causes the potential to go to zero smoothly at the
266     cut-off radius, and preserves conservation of energy in integrating
267     the equations of motion.
268 mmeineke 1044
269     Interactions between dissimilar particles requires the generation of
270     cross term parameters for $\sigma$ and $\epsilon$. These are
271     calculated through the Lorentz-Berthelot mixing
272     rules:\cite{allen87:csl}
273     \begin{equation}
274     \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
275     \label{eq:sigmaMix}
276     \end{equation}
277     and
278     \begin{equation}
279     \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
280     \label{eq:epsilonMix}
281     \end{equation}
282    
283    
284    
285 mmeineke 1051 \subsection{\label{oopseSec:DUFF}Dipolar Unified-Atom Force Field}
286 mmeineke 1044
287     The dipolar unified-atom force field ({\sc duff}) was developed to
288     simulate lipid bilayers. The simulations require a model capable of
289     forming bilayers, while still being sufficiently computationally
290 mmeineke 1054 efficient to allow large systems ($\sim$100's of phospholipids,
291     $\sim$1000's of waters) to be simulated for long times
292     ($\sim$10's of nanoseconds).
293 mmeineke 1044
294     With this goal in mind, {\sc duff} has no point
295     charges. Charge-neutral distributions were replaced with dipoles,
296     while most atoms and groups of atoms were reduced to Lennard-Jones
297     interaction sites. This simplification cuts the length scale of long
298 mmeineke 1068 range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$, and allows
299     us to avoid the computationally expensive Ewald sum. Instead, we can
300     use neighbor-lists and cutoff radii for the dipolar interactions, or
301     include a reaction field to mimic larger range interactions.
302 mmeineke 1044
303     As an example, lipid head-groups in {\sc duff} are represented as
304 mmeineke 1068 point dipole interaction sites. By placing a dipole at the head group
305     center of mass, our model mimics the charge separation found in common
306     phospholipids such as phosphatidylcholine.\cite{Cevc87} Additionally,
307     a large Lennard-Jones site is located at the pseudoatom's center of
308     mass. The model is illustrated by the red atom in
309     Fig.~\ref{oopseFig:lipidModel}. The water model we use to complement
310     the dipoles of the lipids is our reparameterization of the soft sticky
311     dipole (SSD) model of Ichiye
312 mmeineke 1044 \emph{et al.}\cite{liu96:new_model}
313    
314     \begin{figure}
315 mmeineke 1045 \centering
316     \includegraphics[width=\linewidth]{lipidModel.eps}
317 mmeineke 1044 \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
318     is the bend angle, $\mu$ is the dipole moment of the head group, and n
319     is the chain length.}
320 mmeineke 1045 \label{oopseFig:lipidModel}
321 mmeineke 1044 \end{figure}
322    
323     We have used a set of scalable parameters to model the alkyl groups
324     with Lennard-Jones sites. For this, we have borrowed parameters from
325     the TraPPE force field of Siepmann
326     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
327     representation of n-alkanes, which is parametrized against phase
328     equilibria using Gibbs ensemble Monte Carlo simulation
329     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
330     it generalizes the types of atoms in an alkyl chain to keep the number
331 mmeineke 1068 of pseudoatoms to a minimum; the parameters for a unified atom such as
332 mmeineke 1044 $\text{CH}_2$ do not change depending on what species are bonded to
333     it.
334    
335     TraPPE also constrains all bonds to be of fixed length. Typically,
336     bond vibrations are the fastest motions in a molecular dynamic
337     simulation. Small time steps between force evaluations must be used to
338 mmeineke 1068 ensure adequate energy conservation in the bond degrees of freedom. By
339     constraining the bond lengths, larger time steps may be used when
340     integrating the equations of motion. A simulation using {\sc duff} is
341     illustrated in Scheme \ref{sch:DUFF}.
342 mmeineke 1044
343 mmeineke 1045 \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]Sample \texttt{.bass} file showing a simulation utilizing {\sc duff}},label={sch:DUFF}]
344 mmeineke 1044
345     #include "water.mdl"
346     #include "lipid.mdl"
347    
348     nComponents = 2;
349     component{
350     type = "simpleLipid_16";
351     nMol = 60;
352     }
353    
354     component{
355     type = "SSD_water";
356     nMol = 1936;
357     }
358    
359     initialConfig = "bilayer.init";
360    
361     forceField = "DUFF";
362    
363     \end{lstlisting}
364    
365 mmeineke 1051 \subsection{\label{oopseSec:energyFunctions}{\sc duff} Energy Functions}
366 mmeineke 1044
367     The total potential energy function in {\sc duff} is
368     \begin{equation}
369     V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
370 mmeineke 1054 + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}}
371 mmeineke 1044 \label{eq:totalPotential}
372     \end{equation}
373     Where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
374     \begin{equation}
375     V^{I}_{\text{Internal}} =
376     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
377     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
378     + \sum_{i \in I} \sum_{(j>i+4) \in I}
379     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
380     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
381     \biggr]
382     \label{eq:internalPotential}
383     \end{equation}
384     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
385     within the molecule $I$, and $V_{\text{torsion}}$ is the torsion potential
386     for all 1, 4 bonded pairs. The pairwise portions of the internal
387     potential are excluded for pairs that are closer than three bonds,
388     i.e.~atom pairs farther away than a torsion are included in the
389     pair-wise loop.
390    
391    
392     The bend potential of a molecule is represented by the following function:
393     \begin{equation}
394     V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
395     \end{equation}
396     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
397 mmeineke 1054 (see Fig.~\ref{oopseFig:lipidModel}), $\theta_0$ is the equilibrium
398 mmeineke 1044 bond angle, and $k_{\theta}$ is the force constant which determines the
399     strength of the harmonic bend. The parameters for $k_{\theta}$ and
400     $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
401    
402     The torsion potential and parameters are also borrowed from TraPPE. It is
403     of the form:
404     \begin{equation}
405     V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
406     + c_2[1 + \cos(2\phi)]
407     + c_3[1 + \cos(3\phi)]
408     \label{eq:origTorsionPot}
409     \end{equation}
410 mmeineke 1068 Where:
411 mmeineke 1044 \begin{equation}
412 mmeineke 1068 \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
413     (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl})
414     \label{eq:torsPhi}
415     \end{equation}
416     Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
417     vectors between atoms $i$, $j$, $k$, and $l$. For computational
418     efficiency, the torsion potential has been recast after the method of
419     {\sc charmm},\cite{Brooks83} in which the angle series is converted to
420     a power series of the form:
421     \begin{equation}
422 mmeineke 1044 V_{\text{torsion}}(\phi) =
423     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
424     \label{eq:torsionPot}
425     \end{equation}
426     Where:
427     \begin{align*}
428     k_0 &= c_1 + c_3 \\
429     k_1 &= c_1 - 3c_3 \\
430     k_2 &= 2 c_2 \\
431     k_3 &= 4c_3
432     \end{align*}
433     By recasting the potential as a power series, repeated trigonometric
434     evaluations are avoided during the calculation of the potential energy.
435    
436    
437     The cross potential between molecules $I$ and $J$, $V^{IJ}_{\text{Cross}}$, is
438     as follows:
439     \begin{equation}
440     V^{IJ}_{\text{Cross}} =
441     \sum_{i \in I} \sum_{j \in J}
442     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
443     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
444     + V_{\text{sticky}}
445     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
446     \biggr]
447     \label{eq:crossPotentail}
448     \end{equation}
449     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
450     $V_{\text{dipole}}$ is the dipole dipole potential, and
451     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
452 mmeineke 1054 (Sec.~\ref{oopseSec:SSD}). Note that not all atom types include all
453 mmeineke 1044 interactions.
454    
455     The dipole-dipole potential has the following form:
456     \begin{equation}
457     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
458     \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
459     \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
460     -
461 mmeineke 1068 3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
462     (\boldsymbol{\hat{u}}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr]
463 mmeineke 1044 \label{eq:dipolePot}
464     \end{equation}
465     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
466     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
467     are the orientational degrees of freedom for atoms $i$ and $j$
468     respectively. $|\mu_i|$ is the magnitude of the dipole moment of atom
469 mmeineke 1054 $i$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation vector
470     of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is the
471     unit vector pointing along $\mathbf{r}_{ij}$
472     ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
473 mmeineke 1044
474 mmeineke 1068 To improve computational efficiency of the dipole-dipole interactions,
475     {\sc oopse} employs an electrostatic cutoff radius. This parameter can
476     be set in the \texttt{.bass} file, and controls the length scale over
477     which dipole interactions are felt. To compensate for the
478     discontinuity in the potential and the forces at the cutoff radius, we
479     have implemented a switching function to smoothly scale the
480     dipole-dipole interaction at the cutoff.
481     \begin{equation}
482     S(r_{ij}) =
483     \begin{cases}
484     1 & \text{if $r_{ij} \le r_t$},\\
485     \frac{(r_{\text{cut}} + 2r_{ij} - 3r_t)(r_{\text{cut}} - r_{ij})^2}
486     {(r_{\text{cut}} - r_t)^2}
487     & \text{if $r_t < r_{ij} \le r_{\text{cut}}$}, \\
488     0 & \text{if $r_{ij} > r_{\text{cut}}$.}
489     \end{cases}
490     \label{eq:dipoleSwitching}
491     \end{equation}
492     Here $S(r_{ij})$ scales the potential at a given $r_{ij}$, and $r_t$
493     is the taper radius some given thickness less than the electrostatic
494     cutoff. The switching thickness can be set in the \texttt{.bass} file.
495 mmeineke 1044
496 mmeineke 1068 \subsection{\label{oopseSec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF}
497 mmeineke 1044
498     In the interest of computational efficiency, the default solvent used
499     by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water
500     model.\cite{Gezelter04} The original SSD was developed by Ichiye
501     \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
502     water model proposed by Bratko, Blum, and
503     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
504     with a Lennard-Jones core and a sticky potential that directs the
505     particles to assume the proper hydrogen bond orientation in the first
506     solvation shell. Thus, the interaction between two SSD water molecules
507     \emph{i} and \emph{j} is given by the potential
508     \begin{equation}
509     V_{ij} =
510     V_{ij}^{LJ} (r_{ij})\ + V_{ij}^{dp}
511     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
512     V_{ij}^{sp}
513     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
514     \label{eq:ssdPot}
515     \end{equation}
516     where the $\mathbf{r}_{ij}$ is the position vector between molecules
517     \emph{i} and \emph{j} with magnitude equal to the distance $r_{ij}$, and
518     $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
519     orientations of the respective molecules. The Lennard-Jones and dipole
520     parts of the potential are given by equations \ref{eq:lennardJonesPot}
521     and \ref{eq:dipolePot} respectively. The sticky part is described by
522     the following,
523     \begin{equation}
524     u_{ij}^{sp}(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=
525     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},
526     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) +
527     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},
528     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
529     \label{eq:stickyPot}
530     \end{equation}
531     where $\nu_0$ is a strength parameter for the sticky potential, and
532     $s$ and $s^\prime$ are cubic switching functions which turn off the
533     sticky interaction beyond the first solvation shell. The $w$ function
534     can be thought of as an attractive potential with tetrahedral
535     geometry:
536     \begin{equation}
537     w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
538     \sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
539     \label{eq:stickyW}
540     \end{equation}
541     while the $w^\prime$ function counters the normal aligned and
542     anti-aligned structures favored by point dipoles:
543     \begin{equation}
544     w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
545     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
546     \label{eq:stickyWprime}
547     \end{equation}
548     It should be noted that $w$ is proportional to the sum of the $Y_3^2$
549     and $Y_3^{-2}$ spherical harmonics (a linear combination which
550     enhances the tetrahedral geometry for hydrogen bonded structures),
551     while $w^\prime$ is a purely empirical function. A more detailed
552     description of the functional parts and variables in this potential
553     can be found in the original SSD
554     articles.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md,Ichiye03}
555    
556 mmeineke 1068 Since SSD/E is a single-point {\it dipolar} model, the force
557 mmeineke 1044 calculations are simplified significantly relative to the standard
558     {\it charged} multi-point models. In the original Monte Carlo
559     simulations using this model, Ichiye {\it et al.} reported that using
560     SSD decreased computer time by a factor of 6-7 compared to other
561     models.\cite{liu96:new_model} What is most impressive is that these savings
562     did not come at the expense of accurate depiction of the liquid state
563 mmeineke 1068 properties. Indeed, SSD/E maintains reasonable agreement with the Head-Gordon
564 mmeineke 1044 diffraction data for the structural features of liquid
565 mmeineke 1068 water.\cite{hura00,liu96:new_model} Additionally, the dynamical properties
566     exhibited by SSD/E agree with experiment better than those of more
567 mmeineke 1044 computationally expensive models (like TIP3P and
568     SPC/E).\cite{chandra99:ssd_md} The combination of speed and accurate depiction
569 mmeineke 1068 of solvent properties makes SSD/E a very attractive model for the
570 mmeineke 1044 simulation of large scale biochemical simulations.
571    
572     Recent constant pressure simulations revealed issues in the original
573     SSD model that led to lower than expected densities at all target
574     pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse}
575     is therefore SSD/E, a density corrected derivative of SSD that
576     exhibits improved liquid structure and transport behavior. If the use
577     of a reaction field long-range interaction correction is desired, it
578     is recommended that the parameters be modified to those of the SSD/RF
579     model. Solvent parameters can be easily modified in an accompanying
580 mmeineke 1068 \texttt{.bass} file as illustrated in the scheme below. A table of the
581 mmeineke 1044 parameter values and the drawbacks and benefits of the different
582 mmeineke 1054 density corrected SSD models can be found in
583     reference~\cite{Gezelter04}.
584 mmeineke 1044
585 mmeineke 1045 \begin{lstlisting}[float,caption={[A simulation of {\sc ssd} water]An example file showing a simulation including {\sc ssd} water.},label={sch:ssd}]
586 mmeineke 1044
587     #include "water.mdl"
588    
589     nComponents = 1;
590     component{
591     type = "SSD_water";
592     nMol = 864;
593     }
594    
595     initialConfig = "liquidWater.init";
596    
597     forceField = "DUFF";
598    
599     /*
600     * The following two flags set the cutoff
601     * radius for the electrostatic forces
602     * as well as the skin thickness of the switching
603     * function.
604     */
605    
606     electrostaticCutoffRadius = 9.2;
607     electrostaticSkinThickness = 1.38;
608    
609     \end{lstlisting}
610    
611    
612 mmeineke 1051 \subsection{\label{oopseSec:eam}Embedded Atom Method}
613 mmeineke 1044
614 mmeineke 1054 There are Molecular Dynamics packages which have the
615 mmeineke 1044 capacity to simulate metallic systems, including some that have
616     parallel computational abilities\cite{plimpton93}. Potentials that
617     describe bonding transition metal
618 mmeineke 1068 systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have an
619 mmeineke 1044 attractive interaction which models ``Embedding''
620     a positively charged metal ion in the electron density due to the
621     free valance ``sea'' of electrons created by the surrounding atoms in
622 mmeineke 1068 the system. A mostly-repulsive pairwise part of the potential
623 mmeineke 1044 describes the interaction of the positively charged metal core ions
624     with one another. A particular potential description called the
625     Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}({\sc eam}) that has
626     particularly wide adoption has been selected for inclusion in {\sc oopse}. A
627 mmeineke 1068 good review of {\sc eam} and other metallic potential formulations was written
628 mmeineke 1044 by Voter.\cite{voter}
629    
630     The {\sc eam} potential has the form:
631     \begin{eqnarray}
632     V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
633     \phi_{ij}({\bf r}_{ij}) \\
634     \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
635 mmeineke 1068 \end{eqnarray}
636 mmeineke 1044 where $F_{i} $ is the embedding function that equates the energy required to embed a
637     positively-charged core ion $i$ into a linear superposition of
638     spherically averaged atomic electron densities given by
639     $\rho_{i}$. $\phi_{ij}$ is a primarily repulsive pairwise interaction
640     between atoms $i$ and $j$. In the original formulation of
641 mmeineke 1054 {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term, however
642 mmeineke 1044 in later refinements to EAM have shown that non-uniqueness between $F$
643     and $\phi$ allow for more general forms for $\phi$.\cite{Daw89}
644     There is a cutoff distance, $r_{cut}$, which limits the
645     summations in the {\sc eam} equation to the few dozen atoms
646     surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
647 mmeineke 1054 interactions. Foiles et al. fit EAM potentials for fcc metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals\cite{FBD86}. These potential fits are in the DYNAMO 86 format and are included with {\sc oopse}.
648 mmeineke 1044
649    
650 mmeineke 1051 \subsection{\label{oopseSec:pbc}Periodic Boundary Conditions}
651 mmeineke 1044
652     \newcommand{\roundme}{\operatorname{round}}
653    
654 mmeineke 1068 \textit{Periodic boundary conditions} are widely used to simulate bulk properties with a relatively small number of particles. The
655     simulation box is replicated throughout space to form an infinite
656     lattice. During the simulation, when a particle moves in the primary
657     cell, its image in other cells move in exactly the same direction with
658     exactly the same orientation. Thus, as a particle leaves the primary
659     cell, one of its images will enter through the opposite face. If the
660     simulation box is large enough to avoid ``feeling'' the symmetries of
661     the periodic lattice, surface effects can be ignored. The available
662     periodic cells in OOPSE are cubic, orthorhombic and parallelepiped. We
663     use a $3 \times 3$ matrix, $\mathbf{H}$, to describe the shape and
664     size of the simulation box. $\mathbf{H}$ is defined:
665 mmeineke 1044 \begin{equation}
666 mmeineke 1068 \mathbf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z )
667 mmeineke 1044 \end{equation}
668 mmeineke 1068 Where $\mathbf{h}_j$ is the column vector of the $j$th axis of the
669     box. During the course of the simulation both the size and shape of
670     the box can be changed to allow volume fluctations when constraining
671     the pressure.
672 mmeineke 1044
673 mmeineke 1068 A real space vector, $\mathbf{r}$ can be transformed in to a box space
674     vector, $\mathbf{s}$, and back through the following transformations:
675     \begin{align}
676     \mathbf{s} &= \mathbf{H}^{-1} \mathbf{r} \\
677     \mathbf{r} &= \mathbf{H} \mathbf{s}
678     \end{align}
679     The vector $\mathbf{s}$ is now a vector expressed as the number of box
680     lengths in the $\mathbf{h}_x$, $\mathbf{h}_y$, and $\mathbf{h}_z$
681     directions. To find the minimum image of a vector $\mathbf{r}$, we
682     first convert it to its corresponding vector in box space, and then,
683     cast each element to lie on the in the range $[-0.5,0.5]$:
684 mmeineke 1044 \begin{equation}
685     s_{i}^{\prime}=s_{i}-\roundme(s_{i})
686     \end{equation}
687 mmeineke 1068 Where $s_i$ is the $i$th element of $\mathbf{s}$, and
688     $\roundme(s_i)$is given by
689 mmeineke 1044 \begin{equation}
690 mmeineke 1068 \roundme(x) =
691     \begin{cases}
692     \lfloor x+0.5 \rfloor & \text{if $x \ge 0$} \\
693     \lceil x-0.5 \rceil & \text{if $x < 0$ }
694     \end{cases}
695 mmeineke 1044 \end{equation}
696 mmeineke 1068 Here $\lfloor x \rfloor$ is the floor operator, and gives the largest
697     integer value that is not greater than $x$, and $\lceil x \rceil$ is
698     the ceiling operator, and gives the smallest integer that is not less
699     than $x$. For example, $\roundme(3.6)=4$, $\roundme(3.1)=3$,
700     $\roundme(-3.6)=-4$, $\roundme(-3.1)=-3$.
701 mmeineke 1044
702     Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
703 mmeineke 1068 transforming back to real space,
704 mmeineke 1044 \begin{equation}
705 mmeineke 1068 \mathbf{r}^{\prime}=\mathbf{H}^{-1}\mathbf{s}^{\prime}%
706 mmeineke 1044 \end{equation}
707 mmeineke 1068 In this way, particles are allowed to diffuse freely in $\mathbf{r}$,
708     but their minimum images, $\mathbf{r}^{\prime}$ are used to compute
709     the interatomic forces.
710 mmeineke 1044
711    
712 mmeineke 1051 \section{\label{oopseSec:IOfiles}Input and Output Files}
713 mmeineke 1044
714     \subsection{{\sc bass} and Model Files}
715    
716 mmeineke 1054 Every {\sc oopse} simulation begins with a {\sc bass} file. {\sc bass}
717 mmeineke 1044 (\underline{B}izarre \underline{A}tom \underline{S}imulation
718     \underline{S}yntax) is a script syntax that is parsed by {\sc oopse} at
719     runtime. The {\sc bass} file allows for the user to completely describe the
720     system they are to simulate, as well as tailor {\sc oopse}'s behavior during
721     the simulation. {\sc bass} files are denoted with the extension
722     \texttt{.bass}, an example file is shown in
723     Fig.~\ref{fig:bassExample}.
724    
725     \begin{figure}
726     \centering
727     \framebox[\linewidth]{\rule{0cm}{0.75\linewidth}I'm a {\sc bass} file!}
728     \caption{Here is an example \texttt{.bass} file}
729     \label{fig:bassExample}
730     \end{figure}
731    
732 mmeineke 1054 Within the \texttt{.bass} file it is necessary to provide a complete
733 mmeineke 1044 description of the molecule before it is actually placed in the
734     simulation. The {\sc bass} syntax was originally developed with this goal in
735     mind, and allows for the specification of all the atoms in a molecular
736     prototype, as well as any bonds, bends, or torsions. These
737     descriptions can become lengthy for complex molecules, and it would be
738 mmeineke 1054 inconvenient to duplicate the simulation at the beginning of each {\sc bass}
739 mmeineke 1044 script. Addressing this issue {\sc bass} allows for the inclusion of model
740     files at the top of a \texttt{.bass} file. These model files, denoted
741     with the \texttt{.mdl} extension, allow the user to describe a
742     molecular prototype once, then simply include it into each simulation
743     containing that molecule.
744    
745 mmeineke 1051 \subsection{\label{oopseSec:coordFiles}Coordinate Files}
746 mmeineke 1044
747     The standard format for storage of a systems coordinates is a modified
748     xyz-file syntax, the exact details of which can be seen in
749     App.~\ref{appCoordFormat}. As all bonding and molecular information is
750     stored in the \texttt{.bass} and \texttt{.mdl} files, the coordinate
751     files are simply the complete set of coordinates for each atom at a
752     given simulation time.
753    
754     There are three major files used by {\sc oopse} written in the coordinate
755     format, they are as follows: the initialization file, the simulation
756     trajectory file, and the final coordinates of the simulation. The
757 mmeineke 1054 initialization file is necessary for {\sc oopse} to start the simulation
758 mmeineke 1044 with the proper coordinates. It is typically denoted with the
759     extension \texttt{.init}. The trajectory file is created at the
760     beginning of the simulation, and is used to store snapshots of the
761     simulation at regular intervals. The first frame is a duplication of
762     the \texttt{.init} file, and each subsequent frame is appended to the
763     file at an interval specified in the \texttt{.bass} file. The
764     trajectory file is given the extension \texttt{.dump}. The final
765     coordinate file is the end of run or \texttt{.eor} file. The
766 mmeineke 1054 \texttt{.eor} file stores the final configuration of the system for a
767 mmeineke 1044 given simulation. The file is updated at the same time as the
768     \texttt{.dump} file. However, it only contains the most recent
769     frame. In this way, an \texttt{.eor} file may be used as the
770     initialization file to a second simulation in order to continue or
771     recover the previous simulation.
772    
773 mmeineke 1054 \subsection{\label{oopseSec:initCoords}Generation of Initial Coordinates}
774 mmeineke 1044
775 mmeineke 1054 As was stated in Sec.~\ref{oopseSec:coordFiles}, an initialization file
776 mmeineke 1044 is needed to provide the starting coordinates for a simulation. The
777     {\sc oopse} package provides a program called \texttt{sysBuilder} to aid in
778     the creation of the \texttt{.init} file. \texttt{sysBuilder} is {\sc bass}
779     aware, and will recognize arguments and parameters in the
780     \texttt{.bass} file that would otherwise be ignored by the
781 mmeineke 1054 simulation. The program itself is under continual development, and is
782 mmeineke 1044 offered here as a helper tool only.
783    
784     \subsection{The Statistics File}
785    
786     The last output file generated by {\sc oopse} is the statistics file. This
787     file records such statistical quantities as the instantaneous
788     temperature, volume, pressure, etc. It is written out with the
789     frequency specified in the \texttt{.bass} file. The file allows the
790 mmeineke 1054 user to observe the system variables as a function of simulation time
791 mmeineke 1044 while the simulation is in progress. One useful function the
792     statistics file serves is to monitor the conserved quantity of a given
793     simulation ensemble, this allows the user to observe the stability of
794     the integrator. The statistics file is denoted with the \texttt{.stat}
795     file extension.
796    
797 mmeineke 1051 \section{\label{oopseSec:mechanics}Mechanics}
798 mmeineke 1044
799 mmeineke 1054 \subsection{\label{oopseSec:integrate}Integrating the Equations of Motion: the Symplectic Step Integrator}
800 mmeineke 1044
801     Integration of the equations of motion was carried out using the
802     symplectic splitting method proposed by Dullweber \emph{et
803     al.}.\cite{Dullweber1997} The reason for this integrator selection
804     deals with poor energy conservation of rigid body systems using
805     quaternions. While quaternions work well for orientational motion in
806     alternate ensembles, the microcanonical ensemble has a constant energy
807     requirement that is quite sensitive to errors in the equations of
808     motion. The original implementation of this code utilized quaternions
809     for rotational motion propagation; however, a detailed investigation
810     showed that they resulted in a steady drift in the total energy,
811     something that has been observed by others.\cite{Laird97}
812    
813     The key difference in the integration method proposed by Dullweber
814     \emph{et al.} is that the entire rotation matrix is propagated from
815     one time step to the next. In the past, this would not have been as
816     feasible a option, being that the rotation matrix for a single body is
817     nine elements long as opposed to 3 or 4 elements for Euler angles and
818     quaternions respectively. System memory has become much less of an
819     issue in recent times, and this has resulted in substantial benefits
820     in energy conservation. There is still the issue of 5 or 6 additional
821     elements for describing the orientation of each particle, which will
822     increase dump files substantially. Simply translating the rotation
823     matrix into its component Euler angles or quaternions for storage
824     purposes relieves this burden.
825    
826     The symplectic splitting method allows for Verlet style integration of
827     both linear and angular motion of rigid bodies. In the integration
828     method, the orientational propagation involves a sequence of matrix
829     evaluations to update the rotation matrix.\cite{Dullweber1997} These
830     matrix rotations end up being more costly computationally than the
831     simpler arithmetic quaternion propagation. With the same time step, a
832     1000 SSD particle simulation shows an average 7\% increase in
833     computation time using the symplectic step method in place of
834     quaternions. This cost is more than justified when comparing the
835     energy conservation of the two methods as illustrated in figure
836     \ref{timestep}.
837    
838     \begin{figure}
839 mmeineke 1045 \centering
840     \includegraphics[width=\linewidth]{timeStep.eps}
841 mmeineke 1044 \caption{Energy conservation using quaternion based integration versus
842     the symplectic step method proposed by Dullweber \emph{et al.} with
843     increasing time step. For each time step, the dotted line is total
844     energy using the symplectic step integrator, and the solid line comes
845     from the quaternion integrator. The larger time step plots are shifted
846     up from the true energy baseline for clarity.}
847     \label{timestep}
848     \end{figure}
849    
850     In figure \ref{timestep}, the resulting energy drift at various time
851     steps for both the symplectic step and quaternion integration schemes
852     is compared. All of the 1000 SSD particle simulations started with the
853     same configuration, and the only difference was the method for
854     handling rotational motion. At time steps of 0.1 and 0.5 fs, both
855     methods for propagating particle rotation conserve energy fairly well,
856     with the quaternion method showing a slight energy drift over time in
857     the 0.5 fs time step simulation. At time steps of 1 and 2 fs, the
858     energy conservation benefits of the symplectic step method are clearly
859     demonstrated. Thus, while maintaining the same degree of energy
860     conservation, one can take considerably longer time steps, leading to
861     an overall reduction in computation time.
862    
863     Energy drift in these SSD particle simulations was unnoticeable for
864     time steps up to three femtoseconds. A slight energy drift on the
865     order of 0.012 kcal/mol per nanosecond was observed at a time step of
866     four femtoseconds, and as expected, this drift increases dramatically
867     with increasing time step. To insure accuracy in the constant energy
868     simulations, time steps were set at 2 fs and kept at this value for
869     constant pressure simulations as well.
870    
871    
872     \subsection{\label{sec:extended}Extended Systems for other Ensembles}
873    
874    
875     {\sc oopse} implements a
876    
877    
878 mmeineke 1054 \subsubsection{\label{oopseSec:noseHooverThermo}Nose-Hoover Thermostatting}
879 mmeineke 1044
880     To mimic the effects of being in a constant temperature ({\sc nvt})
881     ensemble, {\sc oopse} uses the Nose-Hoover extended system
882     approach.\cite{Hoover85} In this method, the equations of motion for
883     the particle positions and velocities are
884     \begin{eqnarray}
885     \dot{{\bf r}} & = & {\bf v} \\
886     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v}
887     \label{eq:nosehoovereom}
888     \end{eqnarray}
889    
890     $\chi$ is an ``extra'' variable included in the extended system, and
891     it is propagated using the first order equation of motion
892     \begin{equation}
893     \dot{\chi} = \frac{1}{\tau_{T}} \left( \frac{T}{T_{target}} - 1 \right)
894     \label{eq:nosehooverext}
895     \end{equation}
896     where $T_{target}$ is the target temperature for the simulation, and
897     $\tau_{T}$ is a time constant for the thermostat.
898    
899     To select the Nose-Hoover {\sc nvt} ensemble, the {\tt ensemble = NVT;}
900     command would be used in the simulation's {\sc bass} file. There is
901     some subtlety in choosing values for $\tau_{T}$, and it is usually set
902     to values of a few ps. Within a {\sc bass} file, $\tau_{T}$ could be
903     set to 1 ps using the {\tt tauThermostat = 1000; } command.
904    
905    
906 mmeineke 1054 \subsection{\label{oopseSec:zcons}Z-Constraint Method}
907 mmeineke 1044
908 mmeineke 1054 Based on fluctuation-dissipation theorem,\bigskip\ force auto-correlation
909 mmeineke 1044 method was developed to investigate the dynamics of ions inside the ion
910     channels.\cite{Roux91} Time-dependent friction coefficient can be calculated
911 mmeineke 1054 from the deviation of the instantaneous force from its mean force.
912 mmeineke 1044
913     %
914    
915     \begin{equation}
916     \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T
917     \end{equation}
918     where%
919     \begin{equation}
920     \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle
921     \end{equation}
922    
923    
924     If the time-dependent friction decay rapidly, static friction coefficient can
925     be approximated by%
926    
927     \begin{equation}
928     \xi^{static}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt
929     \end{equation}
930    
931    
932     Hence, diffusion constant can be estimated by
933     \begin{equation}
934     D(z)=\frac{k_{B}T}{\xi^{static}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
935     }\langle\delta F(z,t)\delta F(z,0)\rangle dt}%
936     \end{equation}
937    
938    
939     \bigskip Z-Constraint method, which fixed the z coordinates of the molecules
940     with respect to the center of the mass of the system, was proposed to obtain
941     the forces required in force auto-correlation method.\cite{Marrink94} However,
942     simply resetting the coordinate will move the center of the mass of the whole
943     system. To avoid this problem, a new method was used at {\sc oopse}. Instead of
944     resetting the coordinate, we reset the forces of z-constraint molecules as
945     well as subtract the total constraint forces from the rest of the system after
946     force calculation at each time step.
947 mmeineke 1054 \begin{align}
948     F_{\alpha i}&=0\\
949     V_{\alpha i}&=V_{\alpha i}-\frac{\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{i}M_{_{\alpha i}}}\\
950     F_{\alpha i}&=F_{\alpha i}-\frac{M_{_{\alpha i}}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}\sum\limits_{\beta}F_{\beta}\\
951     V_{\alpha i}&=V_{\alpha i}-\frac{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}
952     \end{align}
953 mmeineke 1044
954     At the very beginning of the simulation, the molecules may not be at its
955     constraint position. To move the z-constraint molecule to the specified
956     position, a simple harmonic potential is used%
957    
958     \begin{equation}
959     U(t)=\frac{1}{2}k_{Harmonic}(z(t)-z_{cons})^{2}%
960     \end{equation}
961     where $k_{Harmonic}$\bigskip\ is the harmonic force constant, $z(t)$ is
962     current z coordinate of the center of mass of the z-constraint molecule, and
963     $z_{cons}$ is the restraint position. Therefore, the harmonic force operated
964     on the z-constraint molecule at time $t$ can be calculated by%
965     \begin{equation}
966     F_{z_{Harmonic}}(t)=-\frac{\partial U(t)}{\partial z(t)}=-k_{Harmonic}%
967     (z(t)-z_{cons})
968     \end{equation}
969     Worthy of mention, other kinds of potential functions can also be used to
970     drive the z-constraint molecule.
971    
972 mmeineke 1051 \section{\label{oopseSec:props}Trajectory Analysis}
973 mmeineke 1044
974 mmeineke 1051 \subsection{\label{oopseSec:staticProps}Static Property Analysis}
975 mmeineke 1044
976     The static properties of the trajectories are analyzed with the
977     program \texttt{staticProps}. The code is capable of calculating the following
978     pair correlations between species A and B:
979     \begin{itemize}
980     \item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr}
981     \item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta}
982     \item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega}
983     \item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ}
984     \item $\langle \cos \omega \rangle_{\text{AB}}(r)$:
985     Eq.~\ref{eq:cosOmegaOfR}
986     \end{itemize}
987    
988     The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
989     \begin{equation}
990     g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
991     \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
992     \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
993     \end{equation}
994     Where $\mathbf{r}_{ij}$ is the vector
995     \begin{equation*}
996     \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
997     \end{equation*}
998     and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
999     the expected pair density at a given $r$.
1000    
1001     The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
1002     $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
1003     dimensional histograms. Both use $r$ for the primary axis then a
1004     $\cos$ for the secondary axis ($\cos \theta$ for
1005     Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
1006     Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
1007     correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
1008     \theta)$ is defined as follows:
1009     \begin{equation}
1010     g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
1011     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
1012     \delta( \cos \theta - \cos \theta_{ij})
1013     \delta( r - |\mathbf{r}_{ij}|) \rangle
1014     \label{eq:gofrCosTheta}
1015     \end{equation}
1016     Where
1017     \begin{equation*}
1018     \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
1019     \end{equation*}
1020     Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
1021     and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
1022     $\mathbf{r}_{ij}$.
1023    
1024     The second two dimensional histogram is of the form:
1025     \begin{equation}
1026     g_{\text{AB}}(r, \cos \omega) =
1027     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
1028     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
1029     \delta( \cos \omega - \cos \omega_{ij})
1030     \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
1031     \end{equation}
1032     Here
1033     \begin{equation*}
1034     \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
1035     \end{equation*}
1036     Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
1037     directional vectors of species $i$ and $j$.
1038    
1039     The static analysis code is also cable of calculating a three
1040     dimensional pair correlation of the form:
1041     \begin{equation}\label{eq:gofrXYZ}
1042     g_{\text{AB}}(x, y, z) =
1043     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
1044     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
1045     \delta( x - x_{ij})
1046     \delta( y - y_{ij})
1047     \delta( z - z_{ij}) \rangle
1048     \end{equation}
1049     Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
1050     components respectively of vector $\mathbf{r}_{ij}$.
1051    
1052     The final pair correlation is similar to
1053     Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
1054     \rangle_{\text{AB}}(r)$ is calculated in the following way:
1055     \begin{equation}\label{eq:cosOmegaOfR}
1056     \langle \cos \omega \rangle_{\text{AB}}(r) =
1057     \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
1058     (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
1059     \end{equation}
1060     Here $\cos \omega_{ij}$ is defined in the same way as in
1061     Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
1062     correlation that gives the average correlation of two directional
1063     entities as a function of their distance from each other.
1064    
1065     All static properties are calculated on a frame by frame basis. The
1066     trajectory is read a single frame at a time, and the appropriate
1067     calculations are done on each frame. Once one frame is finished, the
1068     next frame is read in, and a running average of the property being
1069     calculated is accumulated in each frame. The program allows for the
1070     user to specify more than one property be calculated in single run,
1071     preventing the need to read a file multiple times.
1072    
1073     \subsection{\label{dynamicProps}Dynamic Property Analysis}
1074    
1075     The dynamic properties of a trajectory are calculated with the program
1076     \texttt{dynamicProps}. The program will calculate the following properties:
1077     \begin{gather}
1078     \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle \label{eq:rms}\\
1079     \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \label{eq:velCorr} \\
1080     \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \label{eq:angularVelCorr}
1081     \end{gather}
1082    
1083     Eq.~\ref{eq:rms} is the root mean square displacement
1084     function. Eq.~\ref{eq:velCorr} and Eq.~\ref{eq:angularVelCorr} are the
1085     velocity and angular velocity correlation functions respectively. The
1086     latter is only applicable to directional species in the simulation.
1087    
1088     The \texttt{dynamicProps} program handles he file in a manner different from
1089     \texttt{staticProps}. As the properties calculated by this program are time
1090     dependent, multiple frames must be read in simultaneously by the
1091     program. For small trajectories this is no problem, and the entire
1092     trajectory is read into memory. However, for long trajectories of
1093     large systems, the files can be quite large. In order to accommodate
1094     large files, \texttt{dynamicProps} adopts a scheme whereby two blocks of memory
1095     are allocated to read in several frames each.
1096    
1097     In this two block scheme, the correlation functions are first
1098     calculated within each memory block, then the cross correlations
1099     between the frames contained within the two blocks are
1100     calculated. Once completed, the memory blocks are incremented, and the
1101     process is repeated. A diagram illustrating the process is shown in
1102 mmeineke 1054 Fig.~\ref{oopseFig:dynamicPropsMemory}. As was the case with
1103     \texttt{staticProps}, multiple properties may be calculated in a
1104     single run to avoid multiple reads on the same file.
1105 mmeineke 1044
1106    
1107 mmeineke 1054
1108 mmeineke 1051 \section{\label{oopseSec:design}Program Design}
1109 mmeineke 1044
1110 mmeineke 1054 \subsection{\label{sec:architecture} {\sc oopse} Architecture}
1111 mmeineke 1044
1112 mmeineke 1054 The core of OOPSE is divided into two main object libraries:
1113     \texttt{libBASS} and \texttt{libmdtools}. \texttt{libBASS} is the
1114     library developed around the parsing engine and \texttt{libmdtools}
1115     is the software library developed around the simulation engine. These
1116     two libraries are designed to encompass all the basic functions and
1117     tools that {\sc oopse} provides. Utility programs, such as the
1118     property analyzers, need only link against the software libraries to
1119     gain access to parsing, force evaluation, and input / output
1120     routines.
1121 mmeineke 1044
1122 mmeineke 1054 Contained in \texttt{libBASS} are all the routines associated with
1123     reading and parsing the \texttt{.bass} input files. Given a
1124     \texttt{.bass} file, \texttt{libBASS} will open it and any associated
1125     \texttt{.mdl} files; then create structures in memory that are
1126     templates of all the molecules specified in the input files. In
1127     addition, any simulation parameters set in the \texttt{.bass} file
1128     will be placed in a structure for later query by the controlling
1129     program.
1130 mmeineke 1044
1131 mmeineke 1054 Located in \texttt{libmdtools} are all other routines necessary to a
1132     Molecular Dynamics simulation. The library uses the main data
1133     structures returned by \texttt{libBASS} to initialize the various
1134     parts of the simulation: the atom structures and positions, the force
1135     field, the integrator, \emph{et cetera}. After initialization, the
1136     library can be used to perform a variety of tasks: integrate a
1137     Molecular Dynamics trajectory, query phase space information from a
1138     specific frame of a completed trajectory, or even recalculate force or
1139     energetic information about specific frames from a completed
1140     trajectory.
1141 mmeineke 1044
1142 mmeineke 1054 With these core libraries in place, several programs have been
1143     developed to utilize the routines provided by \texttt{libBASS} and
1144     \texttt{libmdtools}. The main program of the package is \texttt{oopse}
1145     and the corresponding parallel version \texttt{oopse\_MPI}. These two
1146     programs will take the \texttt{.bass} file, and create then integrate
1147     the simulation specified in the script. The two analysis programs
1148     \texttt{staticProps} and \texttt{dynamicProps} utilize the core
1149     libraries to initialize and read in trajectories from previously
1150     completed simulations, in addition to the ability to use functionality
1151     from \texttt{libmdtools} to recalculate forces and energies at key
1152     frames in the trajectories. Lastly, the family of system building
1153     programs (Sec.~\ref{oopseSec:initCoords}) also use the libraries to
1154     store and output the system configurations they create.
1155    
1156     \subsection{\label{oopseSec:parallelization} Parallelization of {\sc oopse}}
1157    
1158     Although processor power is continually growing month by month, it is
1159     still unreasonable to simulate systems of more then a 1000 atoms on a
1160     single processor. To facilitate study of larger system sizes or
1161     smaller systems on long time scales in a reasonable period of time,
1162     parallel methods were developed allowing multiple CPU's to share the
1163     simulation workload. Three general categories of parallel
1164     decomposition method's have been developed including atomic, spatial
1165     and force decomposition methods.
1166    
1167 mmeineke 1044 Algorithmically simplest of the three method's is atomic decomposition
1168     where N particles in a simulation are split among P processors for the
1169     duration of the simulation. Computational cost scales as an optimal
1170     $O(N/P)$ for atomic decomposition. Unfortunately all processors must
1171     communicate positions and forces with all other processors leading
1172     communication to scale as an unfavorable $O(N)$ independent of the
1173     number of processors. This communication bottleneck led to the
1174     development of spatial and force decomposition methods in which
1175     communication among processors scales much more favorably. Spatial or
1176     domain decomposition divides the physical spatial domain into 3D boxes
1177     in which each processor is responsible for calculation of forces and
1178     positions of particles located in its box. Particles are reassigned to
1179     different processors as they move through simulation space. To
1180     calculate forces on a given particle, a processor must know the
1181     positions of particles within some cutoff radius located on nearby
1182     processors instead of the positions of particles on all
1183     processors. Both communication between processors and computation
1184     scale as $O(N/P)$ in the spatial method. However, spatial
1185     decomposition adds algorithmic complexity to the simulation code and
1186     is not very efficient for small N since the overall communication
1187     scales as the surface to volume ratio $(N/P)^{2/3}$ in three
1188     dimensions.
1189    
1190     Force decomposition assigns particles to processors based on a block
1191     decomposition of the force matrix. Processors are split into a
1192     optimally square grid forming row and column processor groups. Forces
1193     are calculated on particles in a given row by particles located in
1194     that processors column assignment. Force decomposition is less complex
1195     to implement then the spatial method but still scales computationally
1196     as $O(N/P)$ and scales as $(N/\sqrt{p})$ in communication
1197     cost. Plimpton also found that force decompositions scales more
1198     favorably then spatial decomposition up to 10,000 atoms and favorably
1199     competes with spatial methods for up to 100,000 atoms.
1200    
1201 mmeineke 1054 \subsection{\label{oopseSec:memAlloc}Memory Issues in Trajectory Analysis}
1202 mmeineke 1044
1203 mmeineke 1054 For large simulations, the trajectory files can sometimes reach sizes
1204     in excess of several gigabytes. In order to effectively analyze that
1205     amount of data+, two memory management schemes have been devised for
1206     \texttt{staticProps} and for \texttt{dynamicProps}. The first scheme,
1207     developed for \texttt{staticProps}, is the simplest. As each frame's
1208     statistics are calculated independent of each other, memory is
1209     allocated for each frame, then freed once correlation calculations are
1210     complete for the snapshot. To prevent multiple passes through a
1211     potentially large file, \texttt{staticProps} is capable of calculating
1212     all requested correlations per frame with only a single pair loop in
1213     each frame and a single read through of the file.
1214 mmeineke 1044
1215 mmeineke 1054 The second, more advanced memory scheme, is used by
1216     \texttt{dynamicProps}. Here, the program must have multiple frames in
1217     memory to calculate time dependent correlations. In order to prevent a
1218     situation where the program runs out of memory due to large
1219     trajectories, the user is able to specify that the trajectory be read
1220     in blocks. The number of frames in each block is specified by the
1221     user, and upon reading a block of the trajectory,
1222     \texttt{dynamicProps} will calculate all of the time correlation frame
1223     pairs within the block. After in block correlations are complete, a
1224     second block of the trajectory is read, and the cross correlations are
1225     calculated between the two blocks. this second block is then freed and
1226     then incremented and the process repeated until the end of the
1227     trajectory. Once the end is reached, the first block is freed then
1228     incremented, and the again the internal time correlations are
1229     calculated. The algorithm with the second block is then repeated with
1230     the new origin block, until all frame pairs have been correlated in
1231     time. This process is illustrated in
1232     Fig.~\ref{oopseFig:dynamicPropsMemory}.
1233 mmeineke 1044
1234 mmeineke 1054 \begin{figure}
1235     \centering
1236     \includegraphics[width=\linewidth]{dynamicPropsMem.eps}
1237     \caption[A representation of the block correlations in \texttt{dynamicProps}]{This diagram illustrates the memory management used by \texttt{dynamicProps}, which follows the scheme: $\sum^{N_{\text{memory blocks}}}_{i=1}[ \operatorname{self}(i) + \sum^{N_{\text{memory blocks}}}_{j>i} \operatorname{cross}(i,j)]$. The shaded region represents the self correlation of the memory block, and the open blocks are read one at a time and the cross correlations between blocks are calculated.}
1238     \label{oopseFig:dynamicPropsMemory}
1239     \end{figure}
1240 mmeineke 1044
1241 mmeineke 1054 \subsection{\label{openSource}Open Source and Distribution License}
1242 mmeineke 1044
1243 mmeineke 1054 \section{\label{oopseSec:conclusion}Conclusion}
1244 mmeineke 1044
1245 mmeineke 1054 We have presented the design and implementation of our open source
1246     simulation package {\sc oopse}. The package offers novel
1247     capabilities to the field of Molecular Dynamics simulation packages in
1248     the form of dipolar force fields, and symplectic integration of rigid
1249     body dynamics. It is capable of scaling across multiple processors
1250     through the use of MPI. It also implements several integration
1251     ensembles allowing the end user control over temperature and
1252     pressure. In addition, it is capable of integrating constrained
1253     dynamics through both the {\sc rattle} algorithm and the z-constraint
1254     method.
1255 mmeineke 1044
1256 mmeineke 1054 These features are all brought together in a single open-source
1257     development package. This allows researchers to not only benefit from
1258     {\sc oopse}, but also contribute to {\sc oopse}'s development as
1259     well.Documentation and source code for {\sc oopse} can be downloaded
1260     from \texttt{http://www.openscience.org/oopse/}.
1261 mmeineke 1044