ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/oopse.tex
Revision: 1083
Committed: Fri Mar 5 00:07:19 2004 UTC (20 years, 4 months ago) by mmeineke
Content type: application/x-tex
File size: 69700 byte(s)
Log Message:
added several figures to the lipid paper, changed the ndthesis class around a little. some small fixes in oopse.

File Contents

# User Rev Content
1 mmeineke 1045 \chapter{\label{chapt:oopse}OOPSE: AN OPEN SOURCE OBJECT-ORIENTED PARALLEL SIMULATION ENGINE FOR MOLECULAR DYNAMICS}
2 mmeineke 1044
3    
4    
5 mmeineke 1045 %% \begin{abstract}
6     %% We detail the capabilities of a new open-source parallel simulation
7     %% package ({\sc oopse}) that can perform molecular dynamics simulations
8     %% on atom types that are missing from other popular packages. In
9     %% particular, {\sc oopse} is capable of performing orientational
10     %% dynamics on dipolar systems, and it can handle simulations of metallic
11     %% systems using the embedded atom method ({\sc eam}).
12     %% \end{abstract}
13 mmeineke 1044
14 mmeineke 1045 \lstset{language=C,frame=TB,basicstyle=\small,basicstyle=\ttfamily, %
15     xleftmargin=0.5in, xrightmargin=0.5in,captionpos=b, %
16     abovecaptionskip=0.5cm, belowcaptionskip=0.5cm}
17 mmeineke 1044
18 mmeineke 1051 \section{\label{oopseSec:foreword}Foreword}
19 mmeineke 1044
20 mmeineke 1051 In this chapter, I present and detail the capabilities of the open
21     source simulation package {\sc oopse}. It is important to note, that a
22     simulation package of this size and scope would not have been possible
23     without the collaborative efforts of my colleagues: Charles
24     F.~Vardeman II, Teng Lin, Christopher J.~Fennell and J.~Daniel
25 mmeineke 1068 Gezelter. Although my contributions to {\sc oopse} are major,
26     consideration of my work apart from the others would not give a
27 mmeineke 1051 complete description to the package's capabilities. As such, all
28     contributions to {\sc oopse} to date are presented in this chapter.
29 mmeineke 1044
30 mmeineke 1068 Charles Vardeman is responsible for the parallelization of the long
31     range forces in {\sc oopse} (Sec.~\ref{oopseSec:parallelization}) as
32     well as the inclusion of the embedded-atom potential for transition
33     metals (Sec.~\ref{oopseSec:eam}). Teng Lin's contributions include
34     refinement of the periodic boundary conditions
35 mmeineke 1054 (Sec.~\ref{oopseSec:pbc}), the z-constraint method
36     (Sec.~\ref{oopseSec:zcons}), refinement of the property analysis
37     programs (Sec.~\ref{oopseSec:props}), and development in the extended
38 mmeineke 1068 system integrators (Sec.~\ref{oopseSec:noseHooverThermo}). Christopher
39 mmeineke 1054 Fennell worked on the symplectic integrator
40     (Sec.~\ref{oopseSec:integrate}) and the refinement of the {\sc ssd}
41     water model (Sec.~\ref{oopseSec:SSD}). Daniel Gezelter lent his
42     talents in the development of the extended system integrators
43     (Sec.~\ref{oopseSec:noseHooverThermo}) as well as giving general
44     direction and oversight to the entire project. My responsibilities
45     covered the creation and specification of {\sc bass}
46     (Sec.~\ref{oopseSec:IOfiles}), the original development of the single
47     processor version of {\sc oopse}, contributions to the extended state
48     integrators (Sec.~\ref{oopseSec:noseHooverThermo}), the implementation
49     of the Lennard-Jones (Sec.~\ref{sec:LJPot}) and {\sc duff}
50     (Sec.~\ref{oopseSec:DUFF}) force fields, and initial implementation of
51     the property analysis (Sec.~\ref{oopseSec:props}) and system
52 mmeineke 1068 initialization (Sec.~\ref{oopseSec:initCoords}) utility programs. {\sc
53     oopse}, like many other Molecular Dynamics programs, is a work in
54     progress, and will continue to be so for many graduate student
55     lifetimes.
56 mmeineke 1044
57 mmeineke 1051 \section{\label{sec:intro}Introduction}
58 mmeineke 1044
59 mmeineke 1051 When choosing to simulate a chemical system with molecular dynamics,
60     there are a variety of options available. For simple systems, one
61     might consider writing one's own programming code. However, as systems
62     grow larger and more complex, building and maintaining code for the
63     simulations becomes a time consuming task. In such cases it is usually
64 mmeineke 1054 more convenient for a researcher to turn to pre-existing simulation
65 mmeineke 1051 packages. These packages, such as {\sc amber}\cite{pearlman:1995} and
66     {\sc charmm}\cite{Brooks83}, provide powerful tools for researchers to
67     conduct simulations of their systems without spending their time
68     developing a code base to conduct their research. This then frees them
69 mmeineke 1054 to perhaps explore experimental analogues to their models.
70 mmeineke 1044
71 mmeineke 1051 Despite their utility, problems with these packages arise when
72     researchers try to develop techniques or energetic models that the
73 mmeineke 1068 code was not originally designed to simulate. Examples of uncommonly
74 mmeineke 1051 implemented techniques and energetics include; dipole-dipole
75 mmeineke 1054 interactions, rigid body dynamics, and metallic embedded
76 mmeineke 1051 potentials. When faced with these obstacles, a researcher must either
77     develop their own code or license and extend one of the commercial
78     packages. What we have elected to do, is develop a package of
79     simulation code capable of implementing the types of models upon which
80     our research is based.
81 mmeineke 1044
82 mmeineke 1068 In developing {\sc oopse}, we have adhered to the precepts of Open
83     Source development, and are releasing our source code with a
84     permissive license. It is our intent that by doing so, other
85     researchers might benefit from our work, and add their own
86     contributions to the package. The license under which {\sc oopse} is
87     distributed allows any researcher to download and modify the source
88     code for their own use. In this way further development of {\sc oopse}
89     is not limited to only the models of interest to ourselves, but also
90     those of the community of scientists who contribute back to the
91     project.
92 mmeineke 1044
93 mmeineke 1054 We have structured this chapter to first discuss the empirical energy
94 mmeineke 1051 functions that {\sc oopse } implements in
95 mmeineke 1054 Sec.~\ref{oopseSec:empiricalEnergy}. Following that is a discussion of
96 mmeineke 1051 the various input and output files associated with the package
97 mmeineke 1068 (Sec.~\ref{oopseSec:IOfiles}). Sec.~\ref{oopseSec:mechanics}
98 mmeineke 1051 elucidates the various Molecular Dynamics algorithms {\sc oopse}
99 mmeineke 1054 implements in the integration of the Newtonian equations of
100 mmeineke 1051 motion. Basic analysis of the trajectories obtained from the
101     simulation is discussed in Sec.~\ref{oopseSec:props}. Program design
102 mmeineke 1068 considerations are presented in Sec.~\ref{oopseSec:design}. And
103     lastly, Sec.~\ref{oopseSec:conclusion} concludes the chapter.
104 mmeineke 1044
105 mmeineke 1051 \section{\label{oopseSec:empiricalEnergy}The Empirical Energy Functions}
106    
107     \subsection{\label{oopseSec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
108    
109 mmeineke 1044 The basic unit of an {\sc oopse} simulation is the atom. The
110     parameters describing the atom are generalized to make the atom as
111     flexible a representation as possible. They may represent specific
112     atoms of an element, or be used for collections of atoms such as
113     methyl and carbonyl groups. The atoms are also capable of having
114     directional components associated with them (\emph{e.g.}~permanent
115 mmeineke 1054 dipoles). Charges, permanent dipoles, and Lennard-Jones parameters for
116 mmeineke 1068 a given atom type are set in the force field parameter files.
117 mmeineke 1044
118 mmeineke 1054 \begin{lstlisting}[float,caption={[Specifier for molecules and atoms] A sample specification of an Ar molecule},label=sch:AtmMole]
119 mmeineke 1044 molecule{
120     name = "Ar";
121     nAtoms = 1;
122     atom[0]{
123     type="Ar";
124     position( 0.0, 0.0, 0.0 );
125     }
126     }
127     \end{lstlisting}
128    
129 mmeineke 1045
130 mmeineke 1054 Atoms can be collected into secondary structures such as rigid bodies
131 mmeineke 1044 or molecules. The molecule is a way for {\sc oopse} to keep track of
132     the atoms in a simulation in logical manner. Molecular units store the
133 mmeineke 1054 identities of all the atoms and rigid bodies associated with
134     themselves, and are responsible for the evaluation of their own
135     internal interactions (\emph{i.e.}~bonds, bends, and torsions). Scheme
136 mmeineke 1068 \ref{sch:AtmMole} shows how one creates a molecule in a ``model'' or
137 mmeineke 1054 \texttt{.mdl} file. The position of the atoms given in the
138     declaration are relative to the origin of the molecule, and is used
139     when creating a system containing the molecule.
140 mmeineke 1044
141     As stated previously, one of the features that sets {\sc oopse} apart
142     from most of the current molecular simulation packages is the ability
143     to handle rigid body dynamics. Rigid bodies are non-spherical
144     particles or collections of particles that have a constant internal
145     potential and move collectively.\cite{Goldstein01} They are not
146 mmeineke 1068 included in most simulation packages because of the algorithmic
147     complexity involved in propagating orientational degrees of
148     freedom. Until recently, integrators which propagate orientational
149     motion have been much worse than those available for translational
150     motion.
151 mmeineke 1044
152     Moving a rigid body involves determination of both the force and
153     torque applied by the surroundings, which directly affect the
154     translational and rotational motion in turn. In order to accumulate
155     the total force on a rigid body, the external forces and torques must
156     first be calculated for all the internal particles. The total force on
157     the rigid body is simply the sum of these external forces.
158     Accumulation of the total torque on the rigid body is more complex
159 mmeineke 1068 than the force because the torque is applied to the center of mass of
160     the rigid body. The torque on rigid body $i$ is
161 mmeineke 1044 \begin{equation}
162     \boldsymbol{\tau}_i=
163 mmeineke 1068 \sum_{a}\biggl[(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia}
164     + \boldsymbol{\tau}_{ia}\biggr]
165 mmeineke 1044 \label{eq:torqueAccumulate}
166     \end{equation}
167     where $\boldsymbol{\tau}_i$ and $\mathbf{r}_i$ are the torque on and
168     position of the center of mass respectively, while $\mathbf{f}_{ia}$,
169     $\mathbf{r}_{ia}$, and $\boldsymbol{\tau}_{ia}$ are the force on,
170     position of, and torque on the component particles of the rigid body.
171    
172     The summation of the total torque is done in the body fixed axis of
173 mmeineke 1068 each rigid body. In order to move between the space fixed and body
174 mmeineke 1044 fixed coordinate axes, parameters describing the orientation must be
175     maintained for each rigid body. At a minimum, the rotation matrix
176     (\textbf{A}) can be described by the three Euler angles ($\phi,
177     \theta,$ and $\psi$), where the elements of \textbf{A} are composed of
178     trigonometric operations involving $\phi, \theta,$ and
179     $\psi$.\cite{Goldstein01} In order to avoid numerical instabilities
180     inherent in using the Euler angles, the four parameter ``quaternion''
181     scheme is often used. The elements of \textbf{A} can be expressed as
182     arithmetic operations involving the four quaternions ($q_0, q_1, q_2,$
183     and $q_3$).\cite{allen87:csl} Use of quaternions also leads to
184     performance enhancements, particularly for very small
185     systems.\cite{Evans77}
186    
187     {\sc oopse} utilizes a relatively new scheme that propagates the
188 mmeineke 1068 entire nine parameter rotation matrix. Further discussion
189 mmeineke 1054 on this choice can be found in Sec.~\ref{oopseSec:integrate}. An example
190     definition of a rigid body can be seen in Scheme
191 mmeineke 1044 \ref{sch:rigidBody}. The positions in the atom definitions are the
192     placements of the atoms relative to the origin of the rigid body,
193     which itself has a position relative to the origin of the molecule.
194    
195 mmeineke 1045 \begin{lstlisting}[float,caption={[Defining rigid bodies]A sample definition of a rigid body},label={sch:rigidBody}]
196 mmeineke 1044 molecule{
197     name = "TIP3P_water";
198     nRigidBodies = 1;
199     rigidBody[0]{
200     nAtoms = 3;
201     atom[0]{
202     type = "O_TIP3P";
203     position( 0.0, 0.0, -0.06556 );
204     }
205     atom[1]{
206     type = "H_TIP3P";
207     position( 0.0, 0.75695, 0.52032 );
208     }
209     atom[2]{
210     type = "H_TIP3P";
211     position( 0.0, -0.75695, 0.52032 );
212     }
213     position( 0.0, 0.0, 0.0 );
214     orientation( 0.0, 0.0, 1.0 );
215     }
216     }
217     \end{lstlisting}
218    
219 mmeineke 1054 \subsection{\label{sec:LJPot}The Lennard Jones Force Field}
220 mmeineke 1044
221     The most basic force field implemented in {\sc oopse} is the
222 mmeineke 1054 Lennard-Jones force field, which mimics the van der Waals interaction at
223 mmeineke 1044 long distances, and uses an empirical repulsion at short
224     distances. The Lennard-Jones potential is given by:
225     \begin{equation}
226     V_{\text{LJ}}(r_{ij}) =
227     4\epsilon_{ij} \biggl[
228     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
229     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
230     \biggr]
231     \label{eq:lennardJonesPot}
232     \end{equation}
233     Where $r_{ij}$ is the distance between particles $i$ and $j$,
234     $\sigma_{ij}$ scales the length of the interaction, and
235     $\epsilon_{ij}$ scales the well depth of the potential. Scheme
236 mmeineke 1054 \ref{sch:LJFF} gives and example \texttt{.bass} file that
237     sets up a system of 108 Ar particles to be simulated using the
238     Lennard-Jones force field.
239 mmeineke 1044
240 mmeineke 1045 \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones force field] A sample system using the Lennard-Jones force field.},label={sch:LJFF}]
241 mmeineke 1044
242     #include "argon.mdl"
243    
244     nComponents = 1;
245     component{
246     type = "Ar";
247     nMol = 108;
248     }
249    
250     initialConfig = "./argon.init";
251    
252     forceField = "LJ";
253     \end{lstlisting}
254    
255     Because this potential is calculated between all pairs, the force
256     evaluation can become computationally expensive for large systems. To
257     keep the pair evaluations to a manageable number, {\sc oopse} employs
258 mmeineke 1068 a cut-off radius.\cite{allen87:csl} The cutoff radius can either be
259     specified in the \texttt{.bass} file, or left as its default value of
260 mmeineke 1044 $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest Lennard-Jones
261     length parameter present in the simulation. Truncating the calculation
262     at $r_{\text{cut}}$ introduces a discontinuity into the potential
263 mmeineke 1068 energy and the force. To offset this discontinuity in the potential,
264     the energy value at $r_{\text{cut}}$ is subtracted from the
265     potential. This causes the potential to go to zero smoothly at the
266     cut-off radius, and preserves conservation of energy in integrating
267     the equations of motion.
268 mmeineke 1044
269     Interactions between dissimilar particles requires the generation of
270     cross term parameters for $\sigma$ and $\epsilon$. These are
271     calculated through the Lorentz-Berthelot mixing
272     rules:\cite{allen87:csl}
273     \begin{equation}
274     \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
275     \label{eq:sigmaMix}
276     \end{equation}
277     and
278     \begin{equation}
279     \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
280     \label{eq:epsilonMix}
281     \end{equation}
282    
283 mmeineke 1051 \subsection{\label{oopseSec:DUFF}Dipolar Unified-Atom Force Field}
284 mmeineke 1044
285     The dipolar unified-atom force field ({\sc duff}) was developed to
286     simulate lipid bilayers. The simulations require a model capable of
287     forming bilayers, while still being sufficiently computationally
288 mmeineke 1054 efficient to allow large systems ($\sim$100's of phospholipids,
289     $\sim$1000's of waters) to be simulated for long times
290     ($\sim$10's of nanoseconds).
291 mmeineke 1044
292     With this goal in mind, {\sc duff} has no point
293     charges. Charge-neutral distributions were replaced with dipoles,
294     while most atoms and groups of atoms were reduced to Lennard-Jones
295     interaction sites. This simplification cuts the length scale of long
296 mmeineke 1068 range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$, and allows
297     us to avoid the computationally expensive Ewald sum. Instead, we can
298     use neighbor-lists and cutoff radii for the dipolar interactions, or
299     include a reaction field to mimic larger range interactions.
300 mmeineke 1044
301     As an example, lipid head-groups in {\sc duff} are represented as
302 mmeineke 1068 point dipole interaction sites. By placing a dipole at the head group
303     center of mass, our model mimics the charge separation found in common
304     phospholipids such as phosphatidylcholine.\cite{Cevc87} Additionally,
305     a large Lennard-Jones site is located at the pseudoatom's center of
306     mass. The model is illustrated by the red atom in
307     Fig.~\ref{oopseFig:lipidModel}. The water model we use to complement
308     the dipoles of the lipids is our reparameterization of the soft sticky
309     dipole (SSD) model of Ichiye
310 mmeineke 1044 \emph{et al.}\cite{liu96:new_model}
311    
312     \begin{figure}
313 mmeineke 1045 \centering
314     \includegraphics[width=\linewidth]{lipidModel.eps}
315 mmeineke 1083 \caption[A representation of a lipid model in {\sc duff}]{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
316 mmeineke 1044 is the bend angle, $\mu$ is the dipole moment of the head group, and n
317     is the chain length.}
318 mmeineke 1045 \label{oopseFig:lipidModel}
319 mmeineke 1044 \end{figure}
320    
321     We have used a set of scalable parameters to model the alkyl groups
322     with Lennard-Jones sites. For this, we have borrowed parameters from
323     the TraPPE force field of Siepmann
324     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
325     representation of n-alkanes, which is parametrized against phase
326     equilibria using Gibbs ensemble Monte Carlo simulation
327     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
328     it generalizes the types of atoms in an alkyl chain to keep the number
329 mmeineke 1068 of pseudoatoms to a minimum; the parameters for a unified atom such as
330 mmeineke 1044 $\text{CH}_2$ do not change depending on what species are bonded to
331     it.
332    
333     TraPPE also constrains all bonds to be of fixed length. Typically,
334     bond vibrations are the fastest motions in a molecular dynamic
335     simulation. Small time steps between force evaluations must be used to
336 mmeineke 1068 ensure adequate energy conservation in the bond degrees of freedom. By
337     constraining the bond lengths, larger time steps may be used when
338     integrating the equations of motion. A simulation using {\sc duff} is
339     illustrated in Scheme \ref{sch:DUFF}.
340 mmeineke 1044
341 mmeineke 1045 \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]Sample \texttt{.bass} file showing a simulation utilizing {\sc duff}},label={sch:DUFF}]
342 mmeineke 1044
343     #include "water.mdl"
344     #include "lipid.mdl"
345    
346     nComponents = 2;
347     component{
348     type = "simpleLipid_16";
349     nMol = 60;
350     }
351    
352     component{
353     type = "SSD_water";
354     nMol = 1936;
355     }
356    
357     initialConfig = "bilayer.init";
358    
359     forceField = "DUFF";
360    
361     \end{lstlisting}
362    
363 mmeineke 1051 \subsection{\label{oopseSec:energyFunctions}{\sc duff} Energy Functions}
364 mmeineke 1044
365     The total potential energy function in {\sc duff} is
366     \begin{equation}
367     V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
368 mmeineke 1054 + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}}
369 mmeineke 1044 \label{eq:totalPotential}
370     \end{equation}
371     Where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
372     \begin{equation}
373     V^{I}_{\text{Internal}} =
374     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
375     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
376     + \sum_{i \in I} \sum_{(j>i+4) \in I}
377     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
378     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
379     \biggr]
380     \label{eq:internalPotential}
381     \end{equation}
382     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
383     within the molecule $I$, and $V_{\text{torsion}}$ is the torsion potential
384     for all 1, 4 bonded pairs. The pairwise portions of the internal
385     potential are excluded for pairs that are closer than three bonds,
386     i.e.~atom pairs farther away than a torsion are included in the
387     pair-wise loop.
388    
389    
390     The bend potential of a molecule is represented by the following function:
391     \begin{equation}
392     V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
393     \end{equation}
394     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
395 mmeineke 1054 (see Fig.~\ref{oopseFig:lipidModel}), $\theta_0$ is the equilibrium
396 mmeineke 1044 bond angle, and $k_{\theta}$ is the force constant which determines the
397     strength of the harmonic bend. The parameters for $k_{\theta}$ and
398     $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
399    
400     The torsion potential and parameters are also borrowed from TraPPE. It is
401     of the form:
402     \begin{equation}
403     V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
404     + c_2[1 + \cos(2\phi)]
405     + c_3[1 + \cos(3\phi)]
406     \label{eq:origTorsionPot}
407     \end{equation}
408 mmeineke 1068 Where:
409 mmeineke 1044 \begin{equation}
410 mmeineke 1068 \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
411     (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl})
412     \label{eq:torsPhi}
413     \end{equation}
414     Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
415     vectors between atoms $i$, $j$, $k$, and $l$. For computational
416     efficiency, the torsion potential has been recast after the method of
417     {\sc charmm},\cite{Brooks83} in which the angle series is converted to
418     a power series of the form:
419     \begin{equation}
420 mmeineke 1044 V_{\text{torsion}}(\phi) =
421     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
422     \label{eq:torsionPot}
423     \end{equation}
424     Where:
425     \begin{align*}
426     k_0 &= c_1 + c_3 \\
427     k_1 &= c_1 - 3c_3 \\
428     k_2 &= 2 c_2 \\
429     k_3 &= 4c_3
430     \end{align*}
431     By recasting the potential as a power series, repeated trigonometric
432     evaluations are avoided during the calculation of the potential energy.
433    
434    
435     The cross potential between molecules $I$ and $J$, $V^{IJ}_{\text{Cross}}$, is
436     as follows:
437     \begin{equation}
438     V^{IJ}_{\text{Cross}} =
439     \sum_{i \in I} \sum_{j \in J}
440     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
441     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
442     + V_{\text{sticky}}
443     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
444     \biggr]
445     \label{eq:crossPotentail}
446     \end{equation}
447     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
448     $V_{\text{dipole}}$ is the dipole dipole potential, and
449     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
450 mmeineke 1054 (Sec.~\ref{oopseSec:SSD}). Note that not all atom types include all
451 mmeineke 1044 interactions.
452    
453     The dipole-dipole potential has the following form:
454     \begin{equation}
455     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
456     \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
457     \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
458     -
459 mmeineke 1068 3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
460     (\boldsymbol{\hat{u}}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr]
461 mmeineke 1044 \label{eq:dipolePot}
462     \end{equation}
463     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
464     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
465     are the orientational degrees of freedom for atoms $i$ and $j$
466     respectively. $|\mu_i|$ is the magnitude of the dipole moment of atom
467 mmeineke 1054 $i$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation vector
468     of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is the
469     unit vector pointing along $\mathbf{r}_{ij}$
470     ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
471 mmeineke 1044
472 mmeineke 1068 To improve computational efficiency of the dipole-dipole interactions,
473     {\sc oopse} employs an electrostatic cutoff radius. This parameter can
474     be set in the \texttt{.bass} file, and controls the length scale over
475     which dipole interactions are felt. To compensate for the
476     discontinuity in the potential and the forces at the cutoff radius, we
477     have implemented a switching function to smoothly scale the
478     dipole-dipole interaction at the cutoff.
479     \begin{equation}
480     S(r_{ij}) =
481     \begin{cases}
482     1 & \text{if $r_{ij} \le r_t$},\\
483     \frac{(r_{\text{cut}} + 2r_{ij} - 3r_t)(r_{\text{cut}} - r_{ij})^2}
484     {(r_{\text{cut}} - r_t)^2}
485     & \text{if $r_t < r_{ij} \le r_{\text{cut}}$}, \\
486     0 & \text{if $r_{ij} > r_{\text{cut}}$.}
487     \end{cases}
488     \label{eq:dipoleSwitching}
489     \end{equation}
490     Here $S(r_{ij})$ scales the potential at a given $r_{ij}$, and $r_t$
491     is the taper radius some given thickness less than the electrostatic
492     cutoff. The switching thickness can be set in the \texttt{.bass} file.
493 mmeineke 1044
494 mmeineke 1068 \subsection{\label{oopseSec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF}
495 mmeineke 1044
496     In the interest of computational efficiency, the default solvent used
497     by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water
498     model.\cite{Gezelter04} The original SSD was developed by Ichiye
499     \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
500     water model proposed by Bratko, Blum, and
501     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
502     with a Lennard-Jones core and a sticky potential that directs the
503     particles to assume the proper hydrogen bond orientation in the first
504     solvation shell. Thus, the interaction between two SSD water molecules
505     \emph{i} and \emph{j} is given by the potential
506     \begin{equation}
507     V_{ij} =
508     V_{ij}^{LJ} (r_{ij})\ + V_{ij}^{dp}
509     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
510     V_{ij}^{sp}
511     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
512     \label{eq:ssdPot}
513     \end{equation}
514     where the $\mathbf{r}_{ij}$ is the position vector between molecules
515     \emph{i} and \emph{j} with magnitude equal to the distance $r_{ij}$, and
516     $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
517     orientations of the respective molecules. The Lennard-Jones and dipole
518     parts of the potential are given by equations \ref{eq:lennardJonesPot}
519     and \ref{eq:dipolePot} respectively. The sticky part is described by
520     the following,
521     \begin{equation}
522     u_{ij}^{sp}(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=
523     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},
524     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) +
525     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},
526     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
527     \label{eq:stickyPot}
528     \end{equation}
529     where $\nu_0$ is a strength parameter for the sticky potential, and
530     $s$ and $s^\prime$ are cubic switching functions which turn off the
531     sticky interaction beyond the first solvation shell. The $w$ function
532     can be thought of as an attractive potential with tetrahedral
533     geometry:
534     \begin{equation}
535     w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
536     \sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
537     \label{eq:stickyW}
538     \end{equation}
539     while the $w^\prime$ function counters the normal aligned and
540     anti-aligned structures favored by point dipoles:
541     \begin{equation}
542     w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
543     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
544     \label{eq:stickyWprime}
545     \end{equation}
546     It should be noted that $w$ is proportional to the sum of the $Y_3^2$
547     and $Y_3^{-2}$ spherical harmonics (a linear combination which
548     enhances the tetrahedral geometry for hydrogen bonded structures),
549     while $w^\prime$ is a purely empirical function. A more detailed
550     description of the functional parts and variables in this potential
551     can be found in the original SSD
552     articles.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md,Ichiye03}
553    
554 mmeineke 1068 Since SSD/E is a single-point {\it dipolar} model, the force
555 mmeineke 1044 calculations are simplified significantly relative to the standard
556     {\it charged} multi-point models. In the original Monte Carlo
557     simulations using this model, Ichiye {\it et al.} reported that using
558     SSD decreased computer time by a factor of 6-7 compared to other
559     models.\cite{liu96:new_model} What is most impressive is that these savings
560     did not come at the expense of accurate depiction of the liquid state
561 mmeineke 1068 properties. Indeed, SSD/E maintains reasonable agreement with the Head-Gordon
562 mmeineke 1044 diffraction data for the structural features of liquid
563 mmeineke 1068 water.\cite{hura00,liu96:new_model} Additionally, the dynamical properties
564     exhibited by SSD/E agree with experiment better than those of more
565 mmeineke 1044 computationally expensive models (like TIP3P and
566     SPC/E).\cite{chandra99:ssd_md} The combination of speed and accurate depiction
567 mmeineke 1068 of solvent properties makes SSD/E a very attractive model for the
568 mmeineke 1044 simulation of large scale biochemical simulations.
569    
570     Recent constant pressure simulations revealed issues in the original
571     SSD model that led to lower than expected densities at all target
572     pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse}
573     is therefore SSD/E, a density corrected derivative of SSD that
574     exhibits improved liquid structure and transport behavior. If the use
575     of a reaction field long-range interaction correction is desired, it
576     is recommended that the parameters be modified to those of the SSD/RF
577     model. Solvent parameters can be easily modified in an accompanying
578 mmeineke 1068 \texttt{.bass} file as illustrated in the scheme below. A table of the
579 mmeineke 1044 parameter values and the drawbacks and benefits of the different
580 mmeineke 1054 density corrected SSD models can be found in
581     reference~\cite{Gezelter04}.
582 mmeineke 1044
583 mmeineke 1045 \begin{lstlisting}[float,caption={[A simulation of {\sc ssd} water]An example file showing a simulation including {\sc ssd} water.},label={sch:ssd}]
584 mmeineke 1044
585     #include "water.mdl"
586    
587     nComponents = 1;
588     component{
589     type = "SSD_water";
590     nMol = 864;
591     }
592    
593     initialConfig = "liquidWater.init";
594    
595     forceField = "DUFF";
596    
597     /*
598     * The following two flags set the cutoff
599     * radius for the electrostatic forces
600     * as well as the skin thickness of the switching
601     * function.
602     */
603    
604     electrostaticCutoffRadius = 9.2;
605     electrostaticSkinThickness = 1.38;
606    
607     \end{lstlisting}
608    
609    
610 mmeineke 1051 \subsection{\label{oopseSec:eam}Embedded Atom Method}
611 mmeineke 1044
612 mmeineke 1054 There are Molecular Dynamics packages which have the
613 mmeineke 1044 capacity to simulate metallic systems, including some that have
614     parallel computational abilities\cite{plimpton93}. Potentials that
615     describe bonding transition metal
616 mmeineke 1068 systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have an
617 mmeineke 1044 attractive interaction which models ``Embedding''
618     a positively charged metal ion in the electron density due to the
619     free valance ``sea'' of electrons created by the surrounding atoms in
620 mmeineke 1068 the system. A mostly-repulsive pairwise part of the potential
621 mmeineke 1044 describes the interaction of the positively charged metal core ions
622     with one another. A particular potential description called the
623     Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}({\sc eam}) that has
624     particularly wide adoption has been selected for inclusion in {\sc oopse}. A
625 mmeineke 1068 good review of {\sc eam} and other metallic potential formulations was written
626 mmeineke 1044 by Voter.\cite{voter}
627    
628     The {\sc eam} potential has the form:
629     \begin{eqnarray}
630     V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
631     \phi_{ij}({\bf r}_{ij}) \\
632     \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
633 mmeineke 1068 \end{eqnarray}
634 mmeineke 1083 where $F_{i} $ is the embedding function that equates the energy
635     required to embed a positively-charged core ion $i$ into a linear
636     superposition of spherically averaged atomic electron densities given
637     by $\rho_{i}$. $\phi_{ij}$ is a primarily repulsive pairwise
638     interaction between atoms $i$ and $j$. In the original formulation of
639     {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term,
640     however in later refinements to {\sc eam} have shown that non-uniqueness
641     between $F$ and $\phi$ allow for more general forms for
642     $\phi$.\cite{Daw89} There is a cutoff distance, $r_{cut}$, which
643     limits the summations in the {\sc eam} equation to the few dozen atoms
644 mmeineke 1044 surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
645 mmeineke 1083 interactions. Foiles \emph{et al}.~fit {\sc eam} potentials for the fcc
646     metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals.\cite{FBD86}
647     These fits, are included in {\sc oopse}.
648 mmeineke 1044
649 mmeineke 1051 \subsection{\label{oopseSec:pbc}Periodic Boundary Conditions}
650 mmeineke 1044
651     \newcommand{\roundme}{\operatorname{round}}
652    
653 mmeineke 1068 \textit{Periodic boundary conditions} are widely used to simulate bulk properties with a relatively small number of particles. The
654     simulation box is replicated throughout space to form an infinite
655     lattice. During the simulation, when a particle moves in the primary
656     cell, its image in other cells move in exactly the same direction with
657     exactly the same orientation. Thus, as a particle leaves the primary
658     cell, one of its images will enter through the opposite face. If the
659     simulation box is large enough to avoid ``feeling'' the symmetries of
660     the periodic lattice, surface effects can be ignored. The available
661     periodic cells in OOPSE are cubic, orthorhombic and parallelepiped. We
662 mmeineke 1083 use a $3 \times 3$ matrix, $\mathsf{H}$, to describe the shape and
663     size of the simulation box. $\mathsf{H}$ is defined:
664 mmeineke 1044 \begin{equation}
665 mmeineke 1083 \mathsf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z )
666 mmeineke 1044 \end{equation}
667 mmeineke 1068 Where $\mathbf{h}_j$ is the column vector of the $j$th axis of the
668     box. During the course of the simulation both the size and shape of
669 mmeineke 1083 the box can be changed to allow volume fluctuations when constraining
670 mmeineke 1068 the pressure.
671 mmeineke 1044
672 mmeineke 1068 A real space vector, $\mathbf{r}$ can be transformed in to a box space
673     vector, $\mathbf{s}$, and back through the following transformations:
674     \begin{align}
675 mmeineke 1083 \mathbf{s} &= \mathsf{H}^{-1} \mathbf{r} \\
676     \mathbf{r} &= \mathsf{H} \mathbf{s}
677 mmeineke 1068 \end{align}
678     The vector $\mathbf{s}$ is now a vector expressed as the number of box
679     lengths in the $\mathbf{h}_x$, $\mathbf{h}_y$, and $\mathbf{h}_z$
680     directions. To find the minimum image of a vector $\mathbf{r}$, we
681     first convert it to its corresponding vector in box space, and then,
682     cast each element to lie on the in the range $[-0.5,0.5]$:
683 mmeineke 1044 \begin{equation}
684     s_{i}^{\prime}=s_{i}-\roundme(s_{i})
685     \end{equation}
686 mmeineke 1068 Where $s_i$ is the $i$th element of $\mathbf{s}$, and
687     $\roundme(s_i)$is given by
688 mmeineke 1044 \begin{equation}
689 mmeineke 1068 \roundme(x) =
690     \begin{cases}
691     \lfloor x+0.5 \rfloor & \text{if $x \ge 0$} \\
692     \lceil x-0.5 \rceil & \text{if $x < 0$ }
693     \end{cases}
694 mmeineke 1044 \end{equation}
695 mmeineke 1068 Here $\lfloor x \rfloor$ is the floor operator, and gives the largest
696     integer value that is not greater than $x$, and $\lceil x \rceil$ is
697     the ceiling operator, and gives the smallest integer that is not less
698     than $x$. For example, $\roundme(3.6)=4$, $\roundme(3.1)=3$,
699     $\roundme(-3.6)=-4$, $\roundme(-3.1)=-3$.
700 mmeineke 1044
701     Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
702 mmeineke 1068 transforming back to real space,
703 mmeineke 1044 \begin{equation}
704 mmeineke 1083 \mathbf{r}^{\prime}=\mathsf{H}^{-1}\mathbf{s}^{\prime}%
705 mmeineke 1044 \end{equation}
706 mmeineke 1068 In this way, particles are allowed to diffuse freely in $\mathbf{r}$,
707     but their minimum images, $\mathbf{r}^{\prime}$ are used to compute
708 mmeineke 1083 the inter-atomic forces.
709 mmeineke 1044
710    
711 mmeineke 1051 \section{\label{oopseSec:IOfiles}Input and Output Files}
712 mmeineke 1044
713     \subsection{{\sc bass} and Model Files}
714    
715 mmeineke 1071 Every {\sc oopse} simulation begins with a Bizarre Atom Simulation
716     Syntax ({\sc bass}) file. {\sc bass} is a script syntax that is parsed
717     by {\sc oopse} at runtime. The {\sc bass} file allows for the user to
718     completely describe the system they wish to simulate, as well as tailor
719     {\sc oopse}'s behavior during the simulation. {\sc bass} files are
720     denoted with the extension
721 mmeineke 1044 \texttt{.bass}, an example file is shown in
722 mmeineke 1071 Scheme~\ref{sch:bassExample}.
723 mmeineke 1044
724 mmeineke 1071 \begin{lstlisting}[float,caption={[An example of a complete {\sc bass} file] An example showing a complete {\sc bass} file.},label={sch:bassExample}]
725 mmeineke 1044
726 mmeineke 1071 molecule{
727     name = "Ar";
728     nAtoms = 1;
729     atom[0]{
730     type="Ar";
731     position( 0.0, 0.0, 0.0 );
732     }
733     }
734    
735     nComponents = 1;
736     component{
737     type = "Ar";
738     nMol = 108;
739     }
740    
741     initialConfig = "./argon.init";
742    
743     forceField = "LJ";
744 mmeineke 1083 ensemble = "NVE"; // specify the simulation ensemble
745 mmeineke 1071 dt = 1.0; // the time step for integration
746     runTime = 1e3; // the total simulation run time
747     sampleTime = 100; // trajectory file frequency
748     statusTime = 50; // statistics file frequency
749    
750     \end{lstlisting}
751    
752 mmeineke 1054 Within the \texttt{.bass} file it is necessary to provide a complete
753 mmeineke 1044 description of the molecule before it is actually placed in the
754 mmeineke 1071 simulation. The {\sc bass} syntax was originally developed with this
755     goal in mind, and allows for the specification of all the atoms in a
756     molecular prototype, as well as any bonds, bends, or torsions. These
757 mmeineke 1044 descriptions can become lengthy for complex molecules, and it would be
758 mmeineke 1071 inconvenient to duplicate the simulation at the beginning of each {\sc
759     bass} script. Addressing this issue {\sc bass} allows for the
760     inclusion of model files at the top of a \texttt{.bass} file. These
761     model files, denoted with the \texttt{.mdl} extension, allow the user
762     to describe a molecular prototype once, then simply include it into
763     each simulation containing that molecule. Returning to the example in
764     Scheme~\ref{sch:bassExample}, the \texttt{.mdl} file's contents would
765     be Scheme~\ref{sch:mdlExample}, and the new \texttt{.bass} file would
766     become Scheme~\ref{sch:bassExPrime}.
767 mmeineke 1044
768 mmeineke 1071 \begin{lstlisting}[float,caption={An example \texttt{.mdl} file.},label={sch:mdlExample}]
769    
770     molecule{
771     name = "Ar";
772     nAtoms = 1;
773     atom[0]{
774     type="Ar";
775     position( 0.0, 0.0, 0.0 );
776     }
777     }
778    
779     \end{lstlisting}
780    
781     \begin{lstlisting}[float,caption={Revised {\sc bass} example.},label={sch:bassExPrime}]
782    
783     #include "argon.mdl"
784    
785     nComponents = 1;
786     component{
787     type = "Ar";
788     nMol = 108;
789     }
790    
791     initialConfig = "./argon.init";
792    
793     forceField = "LJ";
794     ensemble = "NVE";
795     dt = 1.0;
796     runTime = 1e3;
797     sampleTime = 100;
798     statusTime = 50;
799    
800     \end{lstlisting}
801    
802 mmeineke 1051 \subsection{\label{oopseSec:coordFiles}Coordinate Files}
803 mmeineke 1044
804     The standard format for storage of a systems coordinates is a modified
805     xyz-file syntax, the exact details of which can be seen in
806 mmeineke 1071 Scheme~\ref{sch:dumpFormat}. As all bonding and molecular information
807     is stored in the \texttt{.bass} and \texttt{.mdl} files, the
808     coordinate files are simply the complete set of coordinates for each
809     atom at a given simulation time. One important note, although the
810     simulation propagates the complete rotation matrix, directional
811     entities are written out using quanternions, to save space in the
812     output files.
813 mmeineke 1044
814 mmeineke 1083 \begin{lstlisting}[float,caption={[The format of the coordinate files]Shows the format of the coordinate files. The fist line is the number of atoms. The second line begins with the time stamp followed by the three $\mathsf{H}$ column vectors. It is important to note, that for extended system ensembles, additional information pertinent to the integrators may be stored on this line as well.. The next lines are the atomic coordinates for all atoms in the system. First is the name followed by position, velocity, quanternions, and lastly angular velocities.},label=sch:dumpFormat]
815 mmeineke 1071
816     nAtoms
817     time; Hxx Hyx Hzx; Hxy Hyy Hzy; Hxz Hyz Hzz;
818     Name1 x y z vx vy vz q0 q1 q2 q3 jx jy jz
819     Name2 x y z vx vy vz q0 q1 q2 q3 jx jy jz
820     etc...
821    
822     \end{lstlisting}
823    
824    
825     There are three major files used by {\sc oopse} written in the
826     coordinate format, they are as follows: the initialization file
827     (\texttt{.init}), the simulation trajectory file (\texttt{.dump}), and
828     the final coordinates of the simulation. The initialization file is
829     necessary for {\sc oopse} to start the simulation with the proper
830     coordinates, and is generated before the simulation run. The
831     trajectory file is created at the beginning of the simulation, and is
832     used to store snapshots of the simulation at regular intervals. The
833     first frame is a duplication of the
834     \texttt{.init} file, and each subsequent frame is appended to the file
835     at an interval specified in the \texttt{.bass} file with the
836     \texttt{sampleTime} flag. The final coordinate file is the end of run file. The
837 mmeineke 1054 \texttt{.eor} file stores the final configuration of the system for a
838 mmeineke 1044 given simulation. The file is updated at the same time as the
839 mmeineke 1071 \texttt{.dump} file, however, it only contains the most recent
840 mmeineke 1044 frame. In this way, an \texttt{.eor} file may be used as the
841 mmeineke 1071 initialization file to a second simulation in order to continue a
842     simulation or recover one from a processor that has crashed during the
843     course of the run.
844 mmeineke 1044
845 mmeineke 1054 \subsection{\label{oopseSec:initCoords}Generation of Initial Coordinates}
846 mmeineke 1044
847 mmeineke 1071 As was stated in Sec.~\ref{oopseSec:coordFiles}, an initialization
848     file is needed to provide the starting coordinates for a
849 mmeineke 1083 simulation. The {\sc oopse} package provides several system building
850     programs to aid in the creation of the \texttt{.init}
851     file. The programs use {\sc bass}, and will recognize
852 mmeineke 1071 arguments and parameters in the \texttt{.bass} file that would
853     otherwise be ignored by the simulation.
854 mmeineke 1044
855     \subsection{The Statistics File}
856    
857 mmeineke 1071 The last output file generated by {\sc oopse} is the statistics
858     file. This file records such statistical quantities as the
859     instantaneous temperature, volume, pressure, etc. It is written out
860     with the frequency specified in the \texttt{.bass} file with the
861     \texttt{statusTime} keyword. The file allows the user to observe the
862     system variables as a function of simulation time while the simulation
863     is in progress. One useful function the statistics file serves is to
864     monitor the conserved quantity of a given simulation ensemble, this
865     allows the user to observe the stability of the integrator. The
866     statistics file is denoted with the \texttt{.stat} file extension.
867 mmeineke 1044
868 mmeineke 1051 \section{\label{oopseSec:mechanics}Mechanics}
869 mmeineke 1044
870 mmeineke 1054 \subsection{\label{oopseSec:integrate}Integrating the Equations of Motion: the Symplectic Step Integrator}
871 mmeineke 1044
872     Integration of the equations of motion was carried out using the
873     symplectic splitting method proposed by Dullweber \emph{et
874 mmeineke 1071 al.}.\cite{Dullweber1997} The reason for the selection of this
875     integrator, is the poor energy conservation of rigid body systems
876     using quaternion dynamics. While quaternions work well for
877     orientational motion in alternate ensembles, the microcanonical
878     ensemble has a constant energy requirement that is quite sensitive to
879     errors in the equations of motion. The original implementation of {\sc
880     oopse} utilized quaternions for rotational motion propagation;
881     however, a detailed investigation showed that they resulted in a
882     steady drift in the total energy, something that has been observed by
883     others.\cite{Laird97}
884 mmeineke 1044
885     The key difference in the integration method proposed by Dullweber
886 mmeineke 1071 \emph{et al}.~({\sc dlm}) is that the entire rotation matrix is propagated from
887     one time step to the next. In the past, this would not have been a
888     feasible option, since the rotation matrix for a single body is nine
889     elements long as opposed to three or four elements for Euler angles
890     and quaternions respectively. System memory has become much less of an
891     issue in recent times, and the {\sc dlm} method has used memory in
892     exchange for substantial benefits in energy conservation.
893 mmeineke 1044
894 mmeineke 1071 The {\sc dlm} method allows for Verlet style integration of both
895     linear and angular motion of rigid bodies. In the integration method,
896     the orientational propagation involves a sequence of matrix
897 mmeineke 1044 evaluations to update the rotation matrix.\cite{Dullweber1997} These
898 mmeineke 1071 matrix rotations are more costly computationally than the simpler
899     arithmetic quaternion propagation. With the same time step, a 1000 SSD
900     particle simulation shows an average 7\% increase in computation time
901     using the {\sc dlm} method in place of quaternions. This cost is more
902     than justified when comparing the energy conservation of the two
903     methods as illustrated in Fig.~\ref{timestep}.
904 mmeineke 1044
905     \begin{figure}
906 mmeineke 1045 \centering
907     \includegraphics[width=\linewidth]{timeStep.eps}
908 mmeineke 1071 \caption[Energy conservation for quaternion versus {\sc dlm} dynamics]{Energy conservation using quaternion based integration versus
909     the {\sc dlm} method with
910 mmeineke 1044 increasing time step. For each time step, the dotted line is total
911 mmeineke 1071 energy using the {\sc dlm} integrator, and the solid line comes
912 mmeineke 1044 from the quaternion integrator. The larger time step plots are shifted
913     up from the true energy baseline for clarity.}
914     \label{timestep}
915     \end{figure}
916    
917 mmeineke 1071 In Fig.~\ref{timestep}, the resulting energy drift at various time
918     steps for both the {\sc dlm} and quaternion integration schemes
919 mmeineke 1044 is compared. All of the 1000 SSD particle simulations started with the
920     same configuration, and the only difference was the method for
921     handling rotational motion. At time steps of 0.1 and 0.5 fs, both
922     methods for propagating particle rotation conserve energy fairly well,
923     with the quaternion method showing a slight energy drift over time in
924     the 0.5 fs time step simulation. At time steps of 1 and 2 fs, the
925 mmeineke 1071 energy conservation benefits of the {\sc dlm} method are clearly
926 mmeineke 1044 demonstrated. Thus, while maintaining the same degree of energy
927     conservation, one can take considerably longer time steps, leading to
928     an overall reduction in computation time.
929    
930     Energy drift in these SSD particle simulations was unnoticeable for
931     time steps up to three femtoseconds. A slight energy drift on the
932     order of 0.012 kcal/mol per nanosecond was observed at a time step of
933     four femtoseconds, and as expected, this drift increases dramatically
934 mmeineke 1071 with increasing time step.
935 mmeineke 1044
936    
937     \subsection{\label{sec:extended}Extended Systems for other Ensembles}
938    
939    
940     {\sc oopse} implements a
941    
942    
943 mmeineke 1071 \subsection{\label{oopseSec:noseHooverThermo}Nose-Hoover Thermostatting}
944 mmeineke 1044
945     To mimic the effects of being in a constant temperature ({\sc nvt})
946     ensemble, {\sc oopse} uses the Nose-Hoover extended system
947     approach.\cite{Hoover85} In this method, the equations of motion for
948     the particle positions and velocities are
949     \begin{eqnarray}
950     \dot{{\bf r}} & = & {\bf v} \\
951     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v}
952     \label{eq:nosehoovereom}
953     \end{eqnarray}
954    
955     $\chi$ is an ``extra'' variable included in the extended system, and
956     it is propagated using the first order equation of motion
957     \begin{equation}
958     \dot{\chi} = \frac{1}{\tau_{T}} \left( \frac{T}{T_{target}} - 1 \right)
959     \label{eq:nosehooverext}
960     \end{equation}
961     where $T_{target}$ is the target temperature for the simulation, and
962     $\tau_{T}$ is a time constant for the thermostat.
963    
964     To select the Nose-Hoover {\sc nvt} ensemble, the {\tt ensemble = NVT;}
965     command would be used in the simulation's {\sc bass} file. There is
966     some subtlety in choosing values for $\tau_{T}$, and it is usually set
967     to values of a few ps. Within a {\sc bass} file, $\tau_{T}$ could be
968     set to 1 ps using the {\tt tauThermostat = 1000; } command.
969    
970 mmeineke 1071 \subsection{\label{oopseSec:rattle}The {\sc rattle} Method for Bond
971     Constraints}
972 mmeineke 1044
973 mmeineke 1071 In order to satisfy the constraints of fixed bond lengths within {\sc
974     oopse}, we have implemented the {\sc rattle} algorithm of
975     Andersen.\cite{andersen83} The algorithm is a velocity verlet
976     formulation of the {\sc shake} method\cite{ryckaert77} of iteratively
977     solving the Lagrange multipliers of constraint. The system of lagrange
978     multipliers allows one to reformulate the equations of motion with
979 mmeineke 1083 explicit constraint forces.\cite{fowles99:lagrange}
980 mmeineke 1071
981 mmeineke 1083 Consider a system described by coordinates $q_1$ and $q_2$ subject to an
982 mmeineke 1071 equation of constraint:
983     \begin{equation}
984     \sigma(q_1, q_2,t) = 0
985     \label{oopseEq:lm1}
986     \end{equation}
987     The Lagrange formulation of the equations of motion can be written:
988     \begin{equation}
989     \delta\int_{t_1}^{t_2}L\, dt =
990     \int_{t_1}^{t_2} \sum_i \biggl [ \frac{\partial L}{\partial q_i}
991     - \frac{d}{dt}\biggl(\frac{\partial L}{\partial \dot{q}_i}
992     \biggr ) \biggr] \delta q_i \, dt = 0
993     \label{oopseEq:lm2}
994     \end{equation}
995     Here, $\delta q_i$ is not independent for each $q$, as $q_1$ and $q_2$
996     are linked by $\sigma$. However, $\sigma$ is fixed at any given
997     instant of time, giving:
998     \begin{align}
999     \delta\sigma &= \biggl( \frac{\partial\sigma}{\partial q_1} \delta q_1 %
1000     + \frac{\partial\sigma}{\partial q_2} \delta q_2 \biggr) = 0 \\
1001     %
1002     \frac{\partial\sigma}{\partial q_1} \delta q_1 &= %
1003     - \frac{\partial\sigma}{\partial q_2} \delta q_2 \\
1004     %
1005     \delta q_2 &= - \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1006     \frac{\partial\sigma}{\partial q_2} \biggr) \delta q_1
1007     \end{align}
1008     Substituted back into Eq.~\ref{oopseEq:lm2},
1009     \begin{equation}
1010     \int_{t_1}^{t_2}\biggl [ \biggl(\frac{\partial L}{\partial q_1}
1011     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1012     \biggr)
1013     - \biggl( \frac{\partial L}{\partial q_1}
1014     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1015     \biggr) \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1016     \frac{\partial\sigma}{\partial q_2} \biggr)\biggr] \delta q_1 \, dt = 0
1017     \label{oopseEq:lm3}
1018     \end{equation}
1019     Leading to,
1020     \begin{equation}
1021     \frac{\biggl(\frac{\partial L}{\partial q_1}
1022     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1023     \biggr)}{\frac{\partial\sigma}{\partial q_1}} =
1024     \frac{\biggl(\frac{\partial L}{\partial q_2}
1025     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_2}
1026     \biggr)}{\frac{\partial\sigma}{\partial q_2}}
1027     \label{oopseEq:lm4}
1028     \end{equation}
1029     This relation can only be statisfied, if both are equal to a single
1030     function $-\lambda(t)$,
1031     \begin{align}
1032     \frac{\biggl(\frac{\partial L}{\partial q_1}
1033     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1034     \biggr)}{\frac{\partial\sigma}{\partial q_1}} &= -\lambda(t) \\
1035     %
1036     \frac{\partial L}{\partial q_1}
1037     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1} &=
1038     -\lambda(t)\,\frac{\partial\sigma}{\partial q_1} \\
1039     %
1040     \frac{\partial L}{\partial q_1}
1041     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1042     + \mathcal{G}_i &= 0
1043     \end{align}
1044     Where $\mathcal{G}_i$, the force of constraint on $i$, is:
1045     \begin{equation}
1046     \mathcal{G}_i = \lambda(t)\,\frac{\partial\sigma}{\partial q_1}
1047     \label{oopseEq:lm5}
1048     \end{equation}
1049    
1050     In a simulation, this would involve the solution of a set of $(m + n)$
1051     number of equations. Where $m$ is the number of constraints, and $n$
1052     is the number of constrained coordinates. In practice, this is not
1053 mmeineke 1083 done, as the matrix inversion necessary to solve the system of
1054 mmeineke 1071 equations would be very time consuming to solve. Additionally, the
1055     numerical error in the solution of the set of $\lambda$'s would be
1056     compounded by the error inherent in propagating by the Velocity Verlet
1057 mmeineke 1083 algorithm ($\Delta t^4$). The Verlet propagation error is negligible
1058     in an unconstrained system, as one is interested in the statistics of
1059 mmeineke 1071 the run, and not that the run be numerically exact to the ``true''
1060     integration. This relates back to the ergodic hypothesis that a time
1061 mmeineke 1083 integral of a valid trajectory will still give the correct ensemble
1062 mmeineke 1071 average. However, in the case of constraints, if the equations of
1063     motion leave the ``true'' trajectory, they are departing from the
1064     constrained surface. The method that is used, is to iteratively solve
1065     for $\lambda(t)$ at each time step.
1066    
1067     In {\sc rattle} the equations of motion are modified subject to the
1068     following two constraints:
1069     \begin{align}
1070     \sigma_{ij}[\mathbf{r}(t)] \equiv
1071     [ \mathbf{r}_i(t) - \mathbf{r}_j(t)]^2 - d_{ij}^2 &= 0 %
1072     \label{oopseEq:c1} \\
1073     %
1074     [\mathbf{\dot{r}}_i(t) - \mathbf{\dot{r}}_j(t)] \cdot
1075     [\mathbf{r}_i(t) - \mathbf{r}_j(t)] &= 0 \label{oopseEq:c2}
1076     \end{align}
1077     Eq.~\ref{oopseEq:c1} is the set of bond constraints, where $d_{ij}$ is
1078     the constrained distance between atom $i$ and
1079     $j$. Eq.~\ref{oopseEq:c2} constrains the velocities of $i$ and $j$ to
1080 mmeineke 1083 be perpendicular to the bond vector, so that the bond can neither grow
1081 mmeineke 1071 nor shrink. The constrained dynamics equations become:
1082     \begin{equation}
1083     m_i \mathbf{\ddot{r}}_i = \mathbf{F}_i + \mathbf{\mathcal{G}}_i
1084     \label{oopseEq:r1}
1085     \end{equation}
1086 mmeineke 1083 Where,$\mathbf{\mathcal{G}}_i$ are the forces of constraint on $i$,
1087     and are defined:
1088 mmeineke 1071 \begin{equation}
1089     \mathbf{\mathcal{G}}_i = - \sum_j \lambda_{ij}(t)\,\nabla \sigma_{ij}
1090     \label{oopseEq:r2}
1091     \end{equation}
1092    
1093     In Velocity Verlet, if $\Delta t = h$, the propagation can be written:
1094     \begin{align}
1095     \mathbf{r}_i(t+h) &=
1096     \mathbf{r}_i(t) + h\mathbf{\dot{r}}(t) +
1097     \frac{h^2}{2m_i}\,\Bigl[ \mathbf{F}_i(t) +
1098     \mathbf{\mathcal{G}}_{Ri}(t) \Bigr] \label{oopseEq:vv1} \\
1099     %
1100     \mathbf{\dot{r}}_i(t+h) &=
1101     \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i}
1102     \Bigl[ \mathbf{F}_i(t) + \mathbf{\mathcal{G}}_{Ri}(t) +
1103     \mathbf{F}_i(t+h) + \mathbf{\mathcal{G}}_{Vi}(t+h) \Bigr] %
1104     \label{oopseEq:vv2}
1105     \end{align}
1106 mmeineke 1083 Where:
1107     \begin{align}
1108     \mathbf{\mathcal{G}}_{Ri}(t) &=
1109     -2 \sum_j \lambda_{Rij}(t) \mathbf{r}_{ij}(t) \\
1110     %
1111     \mathbf{\mathcal{G}}_{Vi}(t+h) &=
1112     -2 \sum_j \lambda_{Vij}(t+h) \mathbf{r}(t+h)
1113     \end{align}
1114     Next, define:
1115     \begin{align}
1116     g_{ij} &= h \lambda_{Rij}(t) \\
1117     k_{ij} &= h \lambda_{Vij}(t+h) \\
1118     \mathbf{q}_i &= \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i} \mathbf{F}_i(t)
1119     - \frac{1}{m_i}\sum_j g_{ij}\mathbf{r}_{ij}(t)
1120     \end{align}
1121     Using these definitions, Eq.~\ref{oopseEq:vv1} and \ref{oopseEq:vv2}
1122     can be rewritten as,
1123     \begin{align}
1124     \mathbf{r}_i(t+h) &= \mathbf{r}_i(t) + h \mathbf{q}_i \\
1125     %
1126     \mathbf{\dot{r}}(t+h) &= \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1127     -\frac{1}{m_i}\sum_j k_{ij} \mathbf{r}_{ij}(t+h)
1128     \end{align}
1129 mmeineke 1071
1130 mmeineke 1083 To integrate the equations of motion, the {\sc rattle} algorithm first
1131     solves for $\mathbf{r}(t+h)$. Let,
1132     \begin{equation}
1133     \mathbf{q}_i = \mathbf{\dot{r}}(t) + \frac{h}{2m_i}\mathbf{F}_i(t)
1134     \end{equation}
1135     Here $\mathbf{q}_i$ corresponds to an initial unconstrained move. Next
1136     pick a constraint $j$, and let,
1137     \begin{equation}
1138     \mathbf{s} = \mathbf{r}_i(t) + h\mathbf{q}_i(t)
1139     - \mathbf{r}_j(t) + h\mathbf{q}_j(t)
1140     \label{oopseEq:ra1}
1141     \end{equation}
1142     If
1143     \begin{equation}
1144     \Big| |\mathbf{s}|^2 - d_{ij}^2 \Big| > \text{tolerance},
1145     \end{equation}
1146     then the constraint is unsatisfied, and corrections are made to the
1147     positions. First we define a test corrected configuration as,
1148     \begin{align}
1149     \mathbf{r}_i^T(t+h) = \mathbf{r}_i(t) + h\biggl[\mathbf{q}_i -
1150     g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_i} \biggr] \\
1151     %
1152     \mathbf{r}_j^T(t+h) = \mathbf{r}_j(t) + h\biggl[\mathbf{q}_j +
1153     g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_j} \biggr]
1154     \end{align}
1155     And we chose $g_{ij}$ such that, $|\mathbf{r}_i^T - \mathbf{r}_j^T|^2
1156     = d_{ij}^2$. Solving the quadratic for $g_{ij}$ we obtain the
1157     approximation,
1158     \begin{equation}
1159     g_{ij} = \frac{(s^2 - d^2)}{2h[\mathbf{s}\cdot\mathbf{r}_{ij}(t)]
1160     (\frac{1}{m_i} + \frac{1}{m_j})}
1161     \end{equation}
1162     Although not an exact solution for $g_{ij}$, as this is an iterative
1163     scheme overall, the eventual solution will converge. With a trial
1164     $g_{ij}$, the new $\mathbf{q}$'s become,
1165     \begin{align}
1166     \mathbf{q}_i &= \mathbf{q}^{\text{old}}_i - g_{ij}\,
1167     \frac{\mathbf{r}_{ij}(t)}{m_i} \\
1168     %
1169     \mathbf{q}_j &= \mathbf{q}^{\text{old}}_j + g_{ij}\,
1170     \frac{\mathbf{r}_{ij}(t)}{m_j}
1171     \end{align}
1172     The whole algorithm is then repeated from Eq.~\ref{oopseEq:ra1} until
1173     all constraints are satisfied.
1174 mmeineke 1071
1175 mmeineke 1083 The second step of {\sc rattle}, is to then update the velocities. The
1176     step starts with,
1177     \begin{equation}
1178     \mathbf{\dot{r}}_i(t+h) = \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1179     \end{equation}
1180     Next we pick a constraint $j$, and calculate the dot product $\ell$.
1181     \begin{equation}
1182     \ell = \mathbf{r}_{ij}(t+h) \cdot \mathbf{\dot{r}}_{ij}(t+h)
1183     \label{oopseEq:rv1}
1184     \end{equation}
1185     Here if constraint Eq.~\ref{oopseEq:c2} holds, $\ell$ should be
1186     zero. Therefore if $\ell$ is greater than some tolerance, then
1187     corrections are made to the $i$ and $j$ velocities.
1188     \begin{align}
1189     \mathbf{\dot{r}}_i^T &= \mathbf{\dot{r}}_i(t+h) - k_{ij}
1190     \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_i} \\
1191     %
1192     \mathbf{\dot{r}}_j^T &= \mathbf{\dot{r}}_j(t+h) + k_{ij}
1193     \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_j}
1194     \end{align}
1195     Like in the previous step, we select a value for $k_{ij}$ such that
1196     $\ell$ is zero.
1197     \begin{equation}
1198     k_{ij} = \frac{\ell}{d^2_{ij}(\frac{1}{m_i} + \frac{1}{m_j})}
1199     \end{equation}
1200     The test velocities, $\mathbf{\dot{r}}^T_i$ and
1201     $\mathbf{\dot{r}}^T_j$, then replace their respective velocities, and
1202     the algorithm is iterated from Eq.~\ref{oopseEq:rv1} until all
1203     constraints are satisfied.
1204 mmeineke 1071
1205 mmeineke 1083
1206 mmeineke 1054 \subsection{\label{oopseSec:zcons}Z-Constraint Method}
1207 mmeineke 1044
1208 mmeineke 1083 Based on the fluctuation-dissipation theorem, a force auto-correlation
1209     method was developed by Roux and Karplus to investigate the dynamics
1210     of ions inside ion channels.\cite{Roux91} The time-dependent friction
1211     coefficient can be calculated from the deviation of the instantaneous
1212     force from its mean force.
1213 mmeineke 1044 \begin{equation}
1214     \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T
1215     \end{equation}
1216     where%
1217     \begin{equation}
1218     \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle
1219     \end{equation}
1220    
1221    
1222 mmeineke 1083 If the time-dependent friction decays rapidly, the static friction
1223     coefficient can be approximated by
1224 mmeineke 1044 \begin{equation}
1225     \xi^{static}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt
1226     \end{equation}
1227 mmeineke 1083 Therefore, the diffusion constant can then be estimated by
1228 mmeineke 1044 \begin{equation}
1229     D(z)=\frac{k_{B}T}{\xi^{static}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
1230     }\langle\delta F(z,t)\delta F(z,0)\rangle dt}%
1231     \end{equation}
1232    
1233 mmeineke 1083 The Z-Constraint method, which fixes the z coordinates of the
1234     molecules with respect to the center of the mass of the system, has
1235     been a method suggested to obtain the forces required for the force
1236     auto-correlation calculation.\cite{Marrink94} However, simply resetting the
1237     coordinate will move the center of the mass of the whole system. To
1238     avoid this problem, a new method was used in {\sc oopse}. Instead of
1239     resetting the coordinate, we reset the forces of z-constraint
1240     molecules as well as subtract the total constraint forces from the
1241     rest of the system after force calculation at each time step.
1242 mmeineke 1054 \begin{align}
1243     F_{\alpha i}&=0\\
1244     V_{\alpha i}&=V_{\alpha i}-\frac{\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{i}M_{_{\alpha i}}}\\
1245     F_{\alpha i}&=F_{\alpha i}-\frac{M_{_{\alpha i}}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}\sum\limits_{\beta}F_{\beta}\\
1246     V_{\alpha i}&=V_{\alpha i}-\frac{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}
1247     \end{align}
1248 mmeineke 1044
1249 mmeineke 1083 At the very beginning of the simulation, the molecules may not be at their
1250     constrained positions. To move a z-constrained molecule to its specified
1251     position, a simple harmonic potential is used
1252 mmeineke 1044 \begin{equation}
1253 mmeineke 1083 U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2}%
1254 mmeineke 1044 \end{equation}
1255 mmeineke 1083 where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$ is the
1256     current $z$ coordinate of the center of mass of the constrained molecule, and
1257     $z_{\text{cons}}$ is the constrained position. The harmonic force operating
1258     on the z-constrained molecule at time $t$ can be calculated by
1259 mmeineke 1044 \begin{equation}
1260 mmeineke 1083 F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
1261     -k_{\text{Harmonic}}(z(t)-z_{\text{cons}})
1262 mmeineke 1044 \end{equation}
1263    
1264 mmeineke 1051 \section{\label{oopseSec:props}Trajectory Analysis}
1265 mmeineke 1044
1266 mmeineke 1051 \subsection{\label{oopseSec:staticProps}Static Property Analysis}
1267 mmeineke 1044
1268     The static properties of the trajectories are analyzed with the
1269 mmeineke 1083 program \texttt{staticProps}. The code is capable of calculating a
1270     number of pair correlations between species A and B. Some of which
1271     only apply to directional entities. The summary of pair correlations
1272     can be found in Table~\ref{oopseTb:gofrs}
1273 mmeineke 1044
1274 mmeineke 1083 \begin{table}
1275     \caption[The list of pair correlations in \texttt{staticProps}]{The different pair correlations in \texttt{staticProps} along with whether atom A or B must be directional.}
1276     \label{oopseTb:gofrs}
1277     \begin{center}
1278     \begin{tabular}{|l|c|c|}
1279     \hline
1280     Name & Equation & Directional Atom \\ \hline
1281     $g_{\text{AB}}(r)$ & Eq.~\ref{eq:gofr} & neither \\ \hline
1282     $g_{\text{AB}}(r, \cos \theta)$ & Eq.~\ref{eq:gofrCosTheta} & A \\ \hline
1283     $g_{\text{AB}}(r, \cos \omega)$ & Eq.~\ref{eq:gofrCosOmega} & both \\ \hline
1284     $g_{\text{AB}}(x, y, z)$ & Eq.~\ref{eq:gofrXYZ} & neither \\ \hline
1285     $\langle \cos \omega \rangle_{\text{AB}}(r)$ & Eq.~\ref{eq:cosOmegaOfR} &%
1286     both \\ \hline
1287     \end{tabular}
1288     \end{center}
1289     \end{table}
1290    
1291 mmeineke 1044 The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
1292     \begin{equation}
1293     g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
1294     \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
1295     \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
1296     \end{equation}
1297     Where $\mathbf{r}_{ij}$ is the vector
1298     \begin{equation*}
1299     \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
1300     \end{equation*}
1301     and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
1302     the expected pair density at a given $r$.
1303    
1304     The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
1305     $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
1306     dimensional histograms. Both use $r$ for the primary axis then a
1307     $\cos$ for the secondary axis ($\cos \theta$ for
1308     Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
1309     Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
1310     correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
1311     \theta)$ is defined as follows:
1312     \begin{equation}
1313     g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
1314     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
1315     \delta( \cos \theta - \cos \theta_{ij})
1316     \delta( r - |\mathbf{r}_{ij}|) \rangle
1317     \label{eq:gofrCosTheta}
1318     \end{equation}
1319     Where
1320     \begin{equation*}
1321     \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
1322     \end{equation*}
1323     Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
1324     and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
1325     $\mathbf{r}_{ij}$.
1326    
1327     The second two dimensional histogram is of the form:
1328     \begin{equation}
1329     g_{\text{AB}}(r, \cos \omega) =
1330     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
1331     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
1332     \delta( \cos \omega - \cos \omega_{ij})
1333     \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
1334     \end{equation}
1335     Here
1336     \begin{equation*}
1337     \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
1338     \end{equation*}
1339     Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
1340     directional vectors of species $i$ and $j$.
1341    
1342     The static analysis code is also cable of calculating a three
1343     dimensional pair correlation of the form:
1344     \begin{equation}\label{eq:gofrXYZ}
1345     g_{\text{AB}}(x, y, z) =
1346     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
1347     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
1348     \delta( x - x_{ij})
1349     \delta( y - y_{ij})
1350     \delta( z - z_{ij}) \rangle
1351     \end{equation}
1352     Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
1353     components respectively of vector $\mathbf{r}_{ij}$.
1354    
1355     The final pair correlation is similar to
1356     Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
1357     \rangle_{\text{AB}}(r)$ is calculated in the following way:
1358     \begin{equation}\label{eq:cosOmegaOfR}
1359     \langle \cos \omega \rangle_{\text{AB}}(r) =
1360     \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
1361     (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
1362     \end{equation}
1363     Here $\cos \omega_{ij}$ is defined in the same way as in
1364     Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
1365     correlation that gives the average correlation of two directional
1366     entities as a function of their distance from each other.
1367    
1368     \subsection{\label{dynamicProps}Dynamic Property Analysis}
1369    
1370     The dynamic properties of a trajectory are calculated with the program
1371 mmeineke 1083 \texttt{dynamicProps}. The program calculates the following properties:
1372 mmeineke 1044 \begin{gather}
1373     \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle \label{eq:rms}\\
1374     \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \label{eq:velCorr} \\
1375     \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \label{eq:angularVelCorr}
1376     \end{gather}
1377    
1378 mmeineke 1083 Eq.~\ref{eq:rms} is the root mean square displacement function. Which
1379     allows one to observe the average displacement of an atom as a
1380     function of time. The quantity is useful when calculating diffusion
1381     coefficients because of the Einstein Relation, which is valid at long
1382     times.\cite{allen87:csl}
1383     \begin{equation}
1384     2tD = \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle
1385     \label{oopseEq:einstein}
1386     \end{equation}
1387    
1388     Eq.~\ref{eq:velCorr} and \ref{eq:angularVelCorr} are the translational
1389 mmeineke 1044 velocity and angular velocity correlation functions respectively. The
1390 mmeineke 1083 latter is only applicable to directional species in the
1391     simulation. The velocity autocorrelation functions are useful when
1392     determining vibrational information about the system of interest.
1393 mmeineke 1044
1394 mmeineke 1051 \section{\label{oopseSec:design}Program Design}
1395 mmeineke 1044
1396 mmeineke 1054 \subsection{\label{sec:architecture} {\sc oopse} Architecture}
1397 mmeineke 1044
1398 mmeineke 1054 The core of OOPSE is divided into two main object libraries:
1399     \texttt{libBASS} and \texttt{libmdtools}. \texttt{libBASS} is the
1400     library developed around the parsing engine and \texttt{libmdtools}
1401     is the software library developed around the simulation engine. These
1402     two libraries are designed to encompass all the basic functions and
1403     tools that {\sc oopse} provides. Utility programs, such as the
1404     property analyzers, need only link against the software libraries to
1405     gain access to parsing, force evaluation, and input / output
1406     routines.
1407 mmeineke 1044
1408 mmeineke 1054 Contained in \texttt{libBASS} are all the routines associated with
1409     reading and parsing the \texttt{.bass} input files. Given a
1410     \texttt{.bass} file, \texttt{libBASS} will open it and any associated
1411     \texttt{.mdl} files; then create structures in memory that are
1412     templates of all the molecules specified in the input files. In
1413     addition, any simulation parameters set in the \texttt{.bass} file
1414     will be placed in a structure for later query by the controlling
1415     program.
1416 mmeineke 1044
1417 mmeineke 1054 Located in \texttt{libmdtools} are all other routines necessary to a
1418     Molecular Dynamics simulation. The library uses the main data
1419     structures returned by \texttt{libBASS} to initialize the various
1420     parts of the simulation: the atom structures and positions, the force
1421     field, the integrator, \emph{et cetera}. After initialization, the
1422     library can be used to perform a variety of tasks: integrate a
1423     Molecular Dynamics trajectory, query phase space information from a
1424     specific frame of a completed trajectory, or even recalculate force or
1425     energetic information about specific frames from a completed
1426     trajectory.
1427 mmeineke 1044
1428 mmeineke 1054 With these core libraries in place, several programs have been
1429     developed to utilize the routines provided by \texttt{libBASS} and
1430     \texttt{libmdtools}. The main program of the package is \texttt{oopse}
1431     and the corresponding parallel version \texttt{oopse\_MPI}. These two
1432 mmeineke 1083 programs will take the \texttt{.bass} file, and create (and integrate)
1433 mmeineke 1054 the simulation specified in the script. The two analysis programs
1434     \texttt{staticProps} and \texttt{dynamicProps} utilize the core
1435     libraries to initialize and read in trajectories from previously
1436     completed simulations, in addition to the ability to use functionality
1437     from \texttt{libmdtools} to recalculate forces and energies at key
1438     frames in the trajectories. Lastly, the family of system building
1439     programs (Sec.~\ref{oopseSec:initCoords}) also use the libraries to
1440     store and output the system configurations they create.
1441    
1442     \subsection{\label{oopseSec:parallelization} Parallelization of {\sc oopse}}
1443    
1444 mmeineke 1083 Although processor power is continually growing roughly following
1445     Moore's Law, it is still unreasonable to simulate systems of more then
1446     a 1000 atoms on a single processor. To facilitate study of larger
1447     system sizes or smaller systems on long time scales in a reasonable
1448     period of time, parallel methods were developed allowing multiple
1449     CPU's to share the simulation workload. Three general categories of
1450     parallel decomposition methods have been developed including atomic,
1451     spatial and force decomposition methods.
1452 mmeineke 1054
1453 mmeineke 1083 Algorithmically simplest of the three methods is atomic decomposition
1454 mmeineke 1044 where N particles in a simulation are split among P processors for the
1455     duration of the simulation. Computational cost scales as an optimal
1456     $O(N/P)$ for atomic decomposition. Unfortunately all processors must
1457 mmeineke 1083 communicate positions and forces with all other processors at every
1458     force evaluation, leading communication costs to scale as an
1459     unfavorable $O(N)$, \emph{independent of the number of processors}. This
1460     communication bottleneck led to the development of spatial and force
1461     decomposition methods in which communication among processors scales
1462     much more favorably. Spatial or domain decomposition divides the
1463     physical spatial domain into 3D boxes in which each processor is
1464     responsible for calculation of forces and positions of particles
1465     located in its box. Particles are reassigned to different processors
1466     as they move through simulation space. To calculate forces on a given
1467     particle, a processor must know the positions of particles within some
1468     cutoff radius located on nearby processors instead of the positions of
1469     particles on all processors. Both communication between processors and
1470     computation scale as $O(N/P)$ in the spatial method. However, spatial
1471 mmeineke 1044 decomposition adds algorithmic complexity to the simulation code and
1472     is not very efficient for small N since the overall communication
1473     scales as the surface to volume ratio $(N/P)^{2/3}$ in three
1474     dimensions.
1475    
1476 mmeineke 1083 The parallelization method used in {\sc oopse} is the force
1477     decomposition method. Force decomposition assigns particles to
1478     processors based on a block decomposition of the force
1479     matrix. Processors are split into an optimally square grid forming row
1480     and column processor groups. Forces are calculated on particles in a
1481     given row by particles located in that processors column
1482     assignment. Force decomposition is less complex to implement than the
1483     spatial method but still scales computationally as $O(N/P)$ and scales
1484     as $O(N/\sqrt{P})$ in communication cost. Plimpton has also found that
1485     force decompositions scale more favorably than spatial decompositions
1486     for systems up to 10,000 atoms and favorably compete with spatial
1487     methods up to 100,000 atoms.\cite{plimpton95}
1488 mmeineke 1044
1489 mmeineke 1054 \subsection{\label{oopseSec:memAlloc}Memory Issues in Trajectory Analysis}
1490 mmeineke 1044
1491 mmeineke 1054 For large simulations, the trajectory files can sometimes reach sizes
1492     in excess of several gigabytes. In order to effectively analyze that
1493 mmeineke 1083 amount of data, two memory management schemes have been devised for
1494 mmeineke 1054 \texttt{staticProps} and for \texttt{dynamicProps}. The first scheme,
1495     developed for \texttt{staticProps}, is the simplest. As each frame's
1496     statistics are calculated independent of each other, memory is
1497     allocated for each frame, then freed once correlation calculations are
1498     complete for the snapshot. To prevent multiple passes through a
1499     potentially large file, \texttt{staticProps} is capable of calculating
1500     all requested correlations per frame with only a single pair loop in
1501 mmeineke 1083 each frame and a single read of the file.
1502 mmeineke 1044
1503 mmeineke 1054 The second, more advanced memory scheme, is used by
1504     \texttt{dynamicProps}. Here, the program must have multiple frames in
1505     memory to calculate time dependent correlations. In order to prevent a
1506     situation where the program runs out of memory due to large
1507     trajectories, the user is able to specify that the trajectory be read
1508     in blocks. The number of frames in each block is specified by the
1509     user, and upon reading a block of the trajectory,
1510     \texttt{dynamicProps} will calculate all of the time correlation frame
1511 mmeineke 1083 pairs within the block. After in-block correlations are complete, a
1512 mmeineke 1054 second block of the trajectory is read, and the cross correlations are
1513     calculated between the two blocks. this second block is then freed and
1514     then incremented and the process repeated until the end of the
1515     trajectory. Once the end is reached, the first block is freed then
1516     incremented, and the again the internal time correlations are
1517     calculated. The algorithm with the second block is then repeated with
1518     the new origin block, until all frame pairs have been correlated in
1519     time. This process is illustrated in
1520     Fig.~\ref{oopseFig:dynamicPropsMemory}.
1521 mmeineke 1044
1522 mmeineke 1054 \begin{figure}
1523     \centering
1524     \includegraphics[width=\linewidth]{dynamicPropsMem.eps}
1525     \caption[A representation of the block correlations in \texttt{dynamicProps}]{This diagram illustrates the memory management used by \texttt{dynamicProps}, which follows the scheme: $\sum^{N_{\text{memory blocks}}}_{i=1}[ \operatorname{self}(i) + \sum^{N_{\text{memory blocks}}}_{j>i} \operatorname{cross}(i,j)]$. The shaded region represents the self correlation of the memory block, and the open blocks are read one at a time and the cross correlations between blocks are calculated.}
1526     \label{oopseFig:dynamicPropsMemory}
1527     \end{figure}
1528 mmeineke 1044
1529 mmeineke 1054 \section{\label{oopseSec:conclusion}Conclusion}
1530 mmeineke 1044
1531 mmeineke 1054 We have presented the design and implementation of our open source
1532 mmeineke 1083 simulation package {\sc oopse}. The package offers novel capabilities
1533     to the field of Molecular Dynamics simulation packages in the form of
1534     dipolar force fields, and symplectic integration of rigid body
1535     dynamics. It is capable of scaling across multiple processors through
1536     the use of force based decomposition using MPI. It also implements
1537     several advanced integrators allowing the end user control over
1538     temperature and pressure. In addition, it is capable of integrating
1539     constrained dynamics through both the {\sc rattle} algorithm and the
1540     z-constraint method.
1541 mmeineke 1044
1542 mmeineke 1054 These features are all brought together in a single open-source
1543 mmeineke 1083 program. Allowing researchers to not only benefit from
1544 mmeineke 1054 {\sc oopse}, but also contribute to {\sc oopse}'s development as
1545     well.Documentation and source code for {\sc oopse} can be downloaded
1546     from \texttt{http://www.openscience.org/oopse/}.
1547 mmeineke 1044