ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/oopse.tex
Revision: 1114
Committed: Thu Apr 15 16:42:53 2004 UTC (20 years, 2 months ago) by mmeineke
Content type: application/x-tex
File size: 99566 byte(s)
Log Message:
updated all equations, and finished all requested revisions

File Contents

# User Rev Content
1 mmeineke 1045 \chapter{\label{chapt:oopse}OOPSE: AN OPEN SOURCE OBJECT-ORIENTED PARALLEL SIMULATION ENGINE FOR MOLECULAR DYNAMICS}
2 mmeineke 1044
3    
4    
5 mmeineke 1045 %% \begin{abstract}
6     %% We detail the capabilities of a new open-source parallel simulation
7     %% package ({\sc oopse}) that can perform molecular dynamics simulations
8     %% on atom types that are missing from other popular packages. In
9     %% particular, {\sc oopse} is capable of performing orientational
10     %% dynamics on dipolar systems, and it can handle simulations of metallic
11     %% systems using the embedded atom method ({\sc eam}).
12     %% \end{abstract}
13 mmeineke 1044
14 mmeineke 1045 \lstset{language=C,frame=TB,basicstyle=\small,basicstyle=\ttfamily, %
15     xleftmargin=0.5in, xrightmargin=0.5in,captionpos=b, %
16     abovecaptionskip=0.5cm, belowcaptionskip=0.5cm}
17 mmeineke 1044
18 mmeineke 1051 \section{\label{oopseSec:foreword}Foreword}
19 mmeineke 1044
20 mmeineke 1051 In this chapter, I present and detail the capabilities of the open
21 mmeineke 1089 source simulation program {\sc oopse}. It is important to note that a
22     simulation program of this size and scope would not have been possible
23 mmeineke 1051 without the collaborative efforts of my colleagues: Charles
24     F.~Vardeman II, Teng Lin, Christopher J.~Fennell and J.~Daniel
25 mmeineke 1068 Gezelter. Although my contributions to {\sc oopse} are major,
26     consideration of my work apart from the others would not give a
27 mmeineke 1089 complete description to the program's capabilities. As such, all
28 mmeineke 1051 contributions to {\sc oopse} to date are presented in this chapter.
29 mmeineke 1044
30 mmeineke 1068 Charles Vardeman is responsible for the parallelization of the long
31     range forces in {\sc oopse} (Sec.~\ref{oopseSec:parallelization}) as
32     well as the inclusion of the embedded-atom potential for transition
33     metals (Sec.~\ref{oopseSec:eam}). Teng Lin's contributions include
34     refinement of the periodic boundary conditions
35 mmeineke 1054 (Sec.~\ref{oopseSec:pbc}), the z-constraint method
36     (Sec.~\ref{oopseSec:zcons}), refinement of the property analysis
37     programs (Sec.~\ref{oopseSec:props}), and development in the extended
38 mmeineke 1068 system integrators (Sec.~\ref{oopseSec:noseHooverThermo}). Christopher
39 mmeineke 1054 Fennell worked on the symplectic integrator
40     (Sec.~\ref{oopseSec:integrate}) and the refinement of the {\sc ssd}
41     water model (Sec.~\ref{oopseSec:SSD}). Daniel Gezelter lent his
42     talents in the development of the extended system integrators
43     (Sec.~\ref{oopseSec:noseHooverThermo}) as well as giving general
44     direction and oversight to the entire project. My responsibilities
45     covered the creation and specification of {\sc bass}
46     (Sec.~\ref{oopseSec:IOfiles}), the original development of the single
47     processor version of {\sc oopse}, contributions to the extended state
48     integrators (Sec.~\ref{oopseSec:noseHooverThermo}), the implementation
49     of the Lennard-Jones (Sec.~\ref{sec:LJPot}) and {\sc duff}
50     (Sec.~\ref{oopseSec:DUFF}) force fields, and initial implementation of
51     the property analysis (Sec.~\ref{oopseSec:props}) and system
52 mmeineke 1068 initialization (Sec.~\ref{oopseSec:initCoords}) utility programs. {\sc
53     oopse}, like many other Molecular Dynamics programs, is a work in
54     progress, and will continue to be so for many graduate student
55     lifetimes.
56 mmeineke 1044
57 mmeineke 1051 \section{\label{sec:intro}Introduction}
58 mmeineke 1044
59 mmeineke 1051 When choosing to simulate a chemical system with molecular dynamics,
60     there are a variety of options available. For simple systems, one
61     might consider writing one's own programming code. However, as systems
62     grow larger and more complex, building and maintaining code for the
63     simulations becomes a time consuming task. In such cases it is usually
64 mmeineke 1054 more convenient for a researcher to turn to pre-existing simulation
65 mmeineke 1051 packages. These packages, such as {\sc amber}\cite{pearlman:1995} and
66     {\sc charmm}\cite{Brooks83}, provide powerful tools for researchers to
67     conduct simulations of their systems without spending their time
68     developing a code base to conduct their research. This then frees them
69 mmeineke 1054 to perhaps explore experimental analogues to their models.
70 mmeineke 1044
71 mmeineke 1051 Despite their utility, problems with these packages arise when
72     researchers try to develop techniques or energetic models that the
73 mmeineke 1089 code was not originally designed to simulate. Examples of techniques
74     and energetics not commonly implemented include; dipole-dipole
75     interactions, rigid body dynamics, and metallic potentials. When faced
76     with these obstacles, a researcher must either develop their own code
77     or license and extend one of the commercial packages. What we have
78     elected to do is develop a body of simulation code capable of
79     implementing the types of models upon which our research is based.
80 mmeineke 1044
81 mmeineke 1068 In developing {\sc oopse}, we have adhered to the precepts of Open
82     Source development, and are releasing our source code with a
83     permissive license. It is our intent that by doing so, other
84     researchers might benefit from our work, and add their own
85     contributions to the package. The license under which {\sc oopse} is
86     distributed allows any researcher to download and modify the source
87     code for their own use. In this way further development of {\sc oopse}
88     is not limited to only the models of interest to ourselves, but also
89     those of the community of scientists who contribute back to the
90     project.
91 mmeineke 1044
92 mmeineke 1054 We have structured this chapter to first discuss the empirical energy
93 mmeineke 1051 functions that {\sc oopse } implements in
94 mmeineke 1054 Sec.~\ref{oopseSec:empiricalEnergy}. Following that is a discussion of
95 mmeineke 1051 the various input and output files associated with the package
96 mmeineke 1068 (Sec.~\ref{oopseSec:IOfiles}). Sec.~\ref{oopseSec:mechanics}
97 mmeineke 1051 elucidates the various Molecular Dynamics algorithms {\sc oopse}
98 mmeineke 1054 implements in the integration of the Newtonian equations of
99 mmeineke 1051 motion. Basic analysis of the trajectories obtained from the
100     simulation is discussed in Sec.~\ref{oopseSec:props}. Program design
101 mmeineke 1068 considerations are presented in Sec.~\ref{oopseSec:design}. And
102     lastly, Sec.~\ref{oopseSec:conclusion} concludes the chapter.
103 mmeineke 1044
104 mmeineke 1051 \section{\label{oopseSec:empiricalEnergy}The Empirical Energy Functions}
105    
106     \subsection{\label{oopseSec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
107    
108 mmeineke 1044 The basic unit of an {\sc oopse} simulation is the atom. The
109     parameters describing the atom are generalized to make the atom as
110     flexible a representation as possible. They may represent specific
111     atoms of an element, or be used for collections of atoms such as
112     methyl and carbonyl groups. The atoms are also capable of having
113     directional components associated with them (\emph{e.g.}~permanent
114 mmeineke 1054 dipoles). Charges, permanent dipoles, and Lennard-Jones parameters for
115 mmeineke 1068 a given atom type are set in the force field parameter files.
116 mmeineke 1044
117 mmeineke 1054 \begin{lstlisting}[float,caption={[Specifier for molecules and atoms] A sample specification of an Ar molecule},label=sch:AtmMole]
118 mmeineke 1044 molecule{
119     name = "Ar";
120     nAtoms = 1;
121     atom[0]{
122     type="Ar";
123     position( 0.0, 0.0, 0.0 );
124     }
125     }
126     \end{lstlisting}
127    
128 mmeineke 1045
129 mmeineke 1054 Atoms can be collected into secondary structures such as rigid bodies
130 mmeineke 1044 or molecules. The molecule is a way for {\sc oopse} to keep track of
131     the atoms in a simulation in logical manner. Molecular units store the
132 mmeineke 1054 identities of all the atoms and rigid bodies associated with
133     themselves, and are responsible for the evaluation of their own
134     internal interactions (\emph{i.e.}~bonds, bends, and torsions). Scheme
135 mmeineke 1068 \ref{sch:AtmMole} shows how one creates a molecule in a ``model'' or
136 mmeineke 1054 \texttt{.mdl} file. The position of the atoms given in the
137     declaration are relative to the origin of the molecule, and is used
138     when creating a system containing the molecule.
139 mmeineke 1044
140     As stated previously, one of the features that sets {\sc oopse} apart
141     from most of the current molecular simulation packages is the ability
142     to handle rigid body dynamics. Rigid bodies are non-spherical
143     particles or collections of particles that have a constant internal
144     potential and move collectively.\cite{Goldstein01} They are not
145 mmeineke 1068 included in most simulation packages because of the algorithmic
146     complexity involved in propagating orientational degrees of
147     freedom. Until recently, integrators which propagate orientational
148     motion have been much worse than those available for translational
149     motion.
150 mmeineke 1044
151     Moving a rigid body involves determination of both the force and
152     torque applied by the surroundings, which directly affect the
153     translational and rotational motion in turn. In order to accumulate
154     the total force on a rigid body, the external forces and torques must
155     first be calculated for all the internal particles. The total force on
156     the rigid body is simply the sum of these external forces.
157     Accumulation of the total torque on the rigid body is more complex
158 mmeineke 1068 than the force because the torque is applied to the center of mass of
159     the rigid body. The torque on rigid body $i$ is
160 mmeineke 1044 \begin{equation}
161     \boldsymbol{\tau}_i=
162 mmeineke 1068 \sum_{a}\biggl[(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia}
163 mmeineke 1114 + \boldsymbol{\tau}_{ia}\biggr],
164 mmeineke 1044 \label{eq:torqueAccumulate}
165     \end{equation}
166     where $\boldsymbol{\tau}_i$ and $\mathbf{r}_i$ are the torque on and
167     position of the center of mass respectively, while $\mathbf{f}_{ia}$,
168     $\mathbf{r}_{ia}$, and $\boldsymbol{\tau}_{ia}$ are the force on,
169     position of, and torque on the component particles of the rigid body.
170    
171     The summation of the total torque is done in the body fixed axis of
172 mmeineke 1068 each rigid body. In order to move between the space fixed and body
173 mmeineke 1044 fixed coordinate axes, parameters describing the orientation must be
174     maintained for each rigid body. At a minimum, the rotation matrix
175 mmeineke 1089 ($\mathsf{A}$) can be described by the three Euler angles ($\phi,
176     \theta,$ and $\psi$), where the elements of $\mathsf{A}$ are composed of
177 mmeineke 1044 trigonometric operations involving $\phi, \theta,$ and
178     $\psi$.\cite{Goldstein01} In order to avoid numerical instabilities
179     inherent in using the Euler angles, the four parameter ``quaternion''
180 mmeineke 1089 scheme is often used. The elements of $\mathsf{A}$ can be expressed as
181 mmeineke 1044 arithmetic operations involving the four quaternions ($q_0, q_1, q_2,$
182     and $q_3$).\cite{allen87:csl} Use of quaternions also leads to
183     performance enhancements, particularly for very small
184     systems.\cite{Evans77}
185    
186     {\sc oopse} utilizes a relatively new scheme that propagates the
187 mmeineke 1068 entire nine parameter rotation matrix. Further discussion
188 mmeineke 1054 on this choice can be found in Sec.~\ref{oopseSec:integrate}. An example
189     definition of a rigid body can be seen in Scheme
190 mmeineke 1044 \ref{sch:rigidBody}. The positions in the atom definitions are the
191     placements of the atoms relative to the origin of the rigid body,
192     which itself has a position relative to the origin of the molecule.
193    
194 mmeineke 1045 \begin{lstlisting}[float,caption={[Defining rigid bodies]A sample definition of a rigid body},label={sch:rigidBody}]
195 mmeineke 1044 molecule{
196 mmeineke 1089 name = "TIP3P";
197     nAtoms = 3;
198     atom[0]{
199     type = "O_TIP3P";
200     position( 0.0, 0.0, -0.06556 );
201     }
202     atom[1]{
203     type = "H_TIP3P";
204     position( 0.0, 0.75695, 0.52032 );
205     }
206     atom[2]{
207     type = "H_TIP3P";
208     position( 0.0, -0.75695, 0.52032 );
209     }
210    
211 mmeineke 1044 nRigidBodies = 1;
212 mmeineke 1089 rigidBody[0]{
213     nMembers = 3;
214     members(0, 1, 2);
215 mmeineke 1044 }
216     }
217     \end{lstlisting}
218    
219 mmeineke 1054 \subsection{\label{sec:LJPot}The Lennard Jones Force Field}
220 mmeineke 1044
221     The most basic force field implemented in {\sc oopse} is the
222 mmeineke 1054 Lennard-Jones force field, which mimics the van der Waals interaction at
223 mmeineke 1044 long distances, and uses an empirical repulsion at short
224     distances. The Lennard-Jones potential is given by:
225     \begin{equation}
226     V_{\text{LJ}}(r_{ij}) =
227     4\epsilon_{ij} \biggl[
228     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
229     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
230 mmeineke 1114 \biggr],
231 mmeineke 1044 \label{eq:lennardJonesPot}
232     \end{equation}
233 mmeineke 1114 where $r_{ij}$ is the distance between particles $i$ and $j$,
234 mmeineke 1044 $\sigma_{ij}$ scales the length of the interaction, and
235     $\epsilon_{ij}$ scales the well depth of the potential. Scheme
236 mmeineke 1112 \ref{sch:LJFF} gives an example \texttt{.bass} file that
237 mmeineke 1054 sets up a system of 108 Ar particles to be simulated using the
238     Lennard-Jones force field.
239 mmeineke 1044
240 mmeineke 1045 \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones force field] A sample system using the Lennard-Jones force field.},label={sch:LJFF}]
241 mmeineke 1044
242     #include "argon.mdl"
243    
244     nComponents = 1;
245     component{
246     type = "Ar";
247     nMol = 108;
248     }
249    
250     initialConfig = "./argon.init";
251    
252     forceField = "LJ";
253     \end{lstlisting}
254    
255     Because this potential is calculated between all pairs, the force
256     evaluation can become computationally expensive for large systems. To
257     keep the pair evaluations to a manageable number, {\sc oopse} employs
258 mmeineke 1068 a cut-off radius.\cite{allen87:csl} The cutoff radius can either be
259     specified in the \texttt{.bass} file, or left as its default value of
260 mmeineke 1044 $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest Lennard-Jones
261     length parameter present in the simulation. Truncating the calculation
262     at $r_{\text{cut}}$ introduces a discontinuity into the potential
263 mmeineke 1068 energy and the force. To offset this discontinuity in the potential,
264     the energy value at $r_{\text{cut}}$ is subtracted from the
265     potential. This causes the potential to go to zero smoothly at the
266     cut-off radius, and preserves conservation of energy in integrating
267 mmeineke 1112 the equations of motion. There still remains a discontinuity in the derivative (the forces), however, this does not significantly affect the dynamics.
268 mmeineke 1044
269     Interactions between dissimilar particles requires the generation of
270     cross term parameters for $\sigma$ and $\epsilon$. These are
271     calculated through the Lorentz-Berthelot mixing
272     rules:\cite{allen87:csl}
273     \begin{equation}
274 mmeineke 1114 \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
275 mmeineke 1044 \label{eq:sigmaMix}
276     \end{equation}
277     and
278     \begin{equation}
279 mmeineke 1114 \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}.
280 mmeineke 1044 \label{eq:epsilonMix}
281     \end{equation}
282    
283 mmeineke 1051 \subsection{\label{oopseSec:DUFF}Dipolar Unified-Atom Force Field}
284 mmeineke 1044
285     The dipolar unified-atom force field ({\sc duff}) was developed to
286     simulate lipid bilayers. The simulations require a model capable of
287     forming bilayers, while still being sufficiently computationally
288 mmeineke 1054 efficient to allow large systems ($\sim$100's of phospholipids,
289     $\sim$1000's of waters) to be simulated for long times
290     ($\sim$10's of nanoseconds).
291 mmeineke 1044
292     With this goal in mind, {\sc duff} has no point
293     charges. Charge-neutral distributions were replaced with dipoles,
294     while most atoms and groups of atoms were reduced to Lennard-Jones
295     interaction sites. This simplification cuts the length scale of long
296 mmeineke 1068 range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$, and allows
297     us to avoid the computationally expensive Ewald sum. Instead, we can
298     use neighbor-lists and cutoff radii for the dipolar interactions, or
299     include a reaction field to mimic larger range interactions.
300 mmeineke 1044
301     As an example, lipid head-groups in {\sc duff} are represented as
302 mmeineke 1089 point dipole interaction sites. By placing a dipole at the head
303     group's center of mass, our model mimics the charge separation found
304     in common phospholipid head groups such as
305     phosphatidylcholine.\cite{Cevc87} Additionally, a large Lennard-Jones
306     site is located at the pseudoatom's center of mass. The model is
307     illustrated by the red atom in Fig.~\ref{oopseFig:lipidModel}. The
308     water model we use to complement the dipoles of the lipids is our
309     reparameterization of the soft sticky dipole (SSD) model of Ichiye
310 mmeineke 1044 \emph{et al.}\cite{liu96:new_model}
311    
312     \begin{figure}
313 mmeineke 1045 \centering
314 mmeineke 1089 \includegraphics[width=\linewidth]{twoChainFig.eps}
315 mmeineke 1083 \caption[A representation of a lipid model in {\sc duff}]{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
316 mmeineke 1089 is the bend angle, and $\mu$ is the dipole moment of the head group.}
317 mmeineke 1045 \label{oopseFig:lipidModel}
318 mmeineke 1044 \end{figure}
319    
320     We have used a set of scalable parameters to model the alkyl groups
321     with Lennard-Jones sites. For this, we have borrowed parameters from
322     the TraPPE force field of Siepmann
323     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
324     representation of n-alkanes, which is parametrized against phase
325     equilibria using Gibbs ensemble Monte Carlo simulation
326     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
327     it generalizes the types of atoms in an alkyl chain to keep the number
328 mmeineke 1068 of pseudoatoms to a minimum; the parameters for a unified atom such as
329 mmeineke 1044 $\text{CH}_2$ do not change depending on what species are bonded to
330     it.
331    
332     TraPPE also constrains all bonds to be of fixed length. Typically,
333     bond vibrations are the fastest motions in a molecular dynamic
334     simulation. Small time steps between force evaluations must be used to
335 mmeineke 1068 ensure adequate energy conservation in the bond degrees of freedom. By
336     constraining the bond lengths, larger time steps may be used when
337     integrating the equations of motion. A simulation using {\sc duff} is
338     illustrated in Scheme \ref{sch:DUFF}.
339 mmeineke 1044
340 mmeineke 1089 \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]A portion of a \texttt{.bass} file showing a simulation utilizing {\sc duff}},label={sch:DUFF}]
341 mmeineke 1044
342     #include "water.mdl"
343     #include "lipid.mdl"
344    
345     nComponents = 2;
346     component{
347     type = "simpleLipid_16";
348     nMol = 60;
349     }
350    
351     component{
352     type = "SSD_water";
353     nMol = 1936;
354     }
355    
356     initialConfig = "bilayer.init";
357    
358     forceField = "DUFF";
359    
360     \end{lstlisting}
361    
362 mmeineke 1051 \subsection{\label{oopseSec:energyFunctions}{\sc duff} Energy Functions}
363 mmeineke 1044
364     The total potential energy function in {\sc duff} is
365     \begin{equation}
366     V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
367 mmeineke 1114 + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
368 mmeineke 1044 \label{eq:totalPotential}
369     \end{equation}
370 mmeineke 1114 where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
371 mmeineke 1044 \begin{equation}
372     V^{I}_{\text{Internal}} =
373     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
374     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
375     + \sum_{i \in I} \sum_{(j>i+4) \in I}
376     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
377     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
378 mmeineke 1114 \biggr].
379 mmeineke 1044 \label{eq:internalPotential}
380     \end{equation}
381     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
382     within the molecule $I$, and $V_{\text{torsion}}$ is the torsion potential
383     for all 1, 4 bonded pairs. The pairwise portions of the internal
384 mmeineke 1112 potential are excluded for atom pairs that are involved in the same bond, bend, or torsion. All other atom pairs within the molecule are subject to the LJ pair potential.
385 mmeineke 1044
386    
387     The bend potential of a molecule is represented by the following function:
388     \begin{equation}
389 mmeineke 1114 V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2, \label{eq:bendPot}
390 mmeineke 1044 \end{equation}
391 mmeineke 1114 where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
392 mmeineke 1054 (see Fig.~\ref{oopseFig:lipidModel}), $\theta_0$ is the equilibrium
393 mmeineke 1044 bond angle, and $k_{\theta}$ is the force constant which determines the
394     strength of the harmonic bend. The parameters for $k_{\theta}$ and
395     $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
396    
397     The torsion potential and parameters are also borrowed from TraPPE. It is
398     of the form:
399     \begin{equation}
400     V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
401     + c_2[1 + \cos(2\phi)]
402 mmeineke 1114 + c_3[1 + \cos(3\phi)],
403 mmeineke 1044 \label{eq:origTorsionPot}
404     \end{equation}
405 mmeineke 1114 where:
406 mmeineke 1044 \begin{equation}
407 mmeineke 1068 \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
408 mmeineke 1114 (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
409 mmeineke 1068 \label{eq:torsPhi}
410     \end{equation}
411     Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
412     vectors between atoms $i$, $j$, $k$, and $l$. For computational
413     efficiency, the torsion potential has been recast after the method of
414     {\sc charmm},\cite{Brooks83} in which the angle series is converted to
415     a power series of the form:
416     \begin{equation}
417 mmeineke 1044 V_{\text{torsion}}(\phi) =
418 mmeineke 1114 k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
419 mmeineke 1044 \label{eq:torsionPot}
420     \end{equation}
421 mmeineke 1114 where:
422 mmeineke 1044 \begin{align*}
423 mmeineke 1114 k_0 &= c_1 + c_3, \\
424     k_1 &= c_1 - 3c_3, \\
425     k_2 &= 2 c_2, \\
426     k_3 &= 4c_3.
427 mmeineke 1044 \end{align*}
428     By recasting the potential as a power series, repeated trigonometric
429     evaluations are avoided during the calculation of the potential energy.
430    
431    
432     The cross potential between molecules $I$ and $J$, $V^{IJ}_{\text{Cross}}$, is
433     as follows:
434     \begin{equation}
435     V^{IJ}_{\text{Cross}} =
436     \sum_{i \in I} \sum_{j \in J}
437     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
438     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
439     + V_{\text{sticky}}
440     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
441 mmeineke 1114 \biggr],
442 mmeineke 1044 \label{eq:crossPotentail}
443     \end{equation}
444 mmeineke 1114 where $V_{\text{LJ}}$ is the Lennard Jones potential,
445 mmeineke 1044 $V_{\text{dipole}}$ is the dipole dipole potential, and
446     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
447 mmeineke 1054 (Sec.~\ref{oopseSec:SSD}). Note that not all atom types include all
448 mmeineke 1044 interactions.
449    
450     The dipole-dipole potential has the following form:
451     \begin{equation}
452     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
453     \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
454     \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
455     -
456 mmeineke 1068 3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
457 mmeineke 1114 (\boldsymbol{\hat{u}}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr].
458 mmeineke 1044 \label{eq:dipolePot}
459     \end{equation}
460     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
461     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
462     are the orientational degrees of freedom for atoms $i$ and $j$
463     respectively. $|\mu_i|$ is the magnitude of the dipole moment of atom
464 mmeineke 1054 $i$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation vector
465     of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is the
466     unit vector pointing along $\mathbf{r}_{ij}$
467     ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
468 mmeineke 1044
469 mmeineke 1068 To improve computational efficiency of the dipole-dipole interactions,
470     {\sc oopse} employs an electrostatic cutoff radius. This parameter can
471     be set in the \texttt{.bass} file, and controls the length scale over
472     which dipole interactions are felt. To compensate for the
473     discontinuity in the potential and the forces at the cutoff radius, we
474     have implemented a switching function to smoothly scale the
475     dipole-dipole interaction at the cutoff.
476     \begin{equation}
477     S(r_{ij}) =
478     \begin{cases}
479     1 & \text{if $r_{ij} \le r_t$},\\
480     \frac{(r_{\text{cut}} + 2r_{ij} - 3r_t)(r_{\text{cut}} - r_{ij})^2}
481     {(r_{\text{cut}} - r_t)^2}
482     & \text{if $r_t < r_{ij} \le r_{\text{cut}}$}, \\
483     0 & \text{if $r_{ij} > r_{\text{cut}}$.}
484     \end{cases}
485     \label{eq:dipoleSwitching}
486     \end{equation}
487     Here $S(r_{ij})$ scales the potential at a given $r_{ij}$, and $r_t$
488     is the taper radius some given thickness less than the electrostatic
489     cutoff. The switching thickness can be set in the \texttt{.bass} file.
490 mmeineke 1044
491 mmeineke 1068 \subsection{\label{oopseSec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF}
492 mmeineke 1044
493     In the interest of computational efficiency, the default solvent used
494     by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water
495     model.\cite{Gezelter04} The original SSD was developed by Ichiye
496     \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
497     water model proposed by Bratko, Blum, and
498     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
499     with a Lennard-Jones core and a sticky potential that directs the
500     particles to assume the proper hydrogen bond orientation in the first
501     solvation shell. Thus, the interaction between two SSD water molecules
502     \emph{i} and \emph{j} is given by the potential
503     \begin{equation}
504     V_{ij} =
505     V_{ij}^{LJ} (r_{ij})\ + V_{ij}^{dp}
506     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
507     V_{ij}^{sp}
508     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
509     \label{eq:ssdPot}
510     \end{equation}
511     where the $\mathbf{r}_{ij}$ is the position vector between molecules
512     \emph{i} and \emph{j} with magnitude equal to the distance $r_{ij}$, and
513     $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
514     orientations of the respective molecules. The Lennard-Jones and dipole
515     parts of the potential are given by equations \ref{eq:lennardJonesPot}
516     and \ref{eq:dipolePot} respectively. The sticky part is described by
517     the following,
518     \begin{equation}
519     u_{ij}^{sp}(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=
520     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},
521     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) +
522     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},
523     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
524     \label{eq:stickyPot}
525     \end{equation}
526     where $\nu_0$ is a strength parameter for the sticky potential, and
527     $s$ and $s^\prime$ are cubic switching functions which turn off the
528     sticky interaction beyond the first solvation shell. The $w$ function
529     can be thought of as an attractive potential with tetrahedral
530     geometry:
531     \begin{equation}
532     w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
533     \sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
534     \label{eq:stickyW}
535     \end{equation}
536     while the $w^\prime$ function counters the normal aligned and
537     anti-aligned structures favored by point dipoles:
538     \begin{equation}
539     w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
540     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
541     \label{eq:stickyWprime}
542     \end{equation}
543     It should be noted that $w$ is proportional to the sum of the $Y_3^2$
544     and $Y_3^{-2}$ spherical harmonics (a linear combination which
545     enhances the tetrahedral geometry for hydrogen bonded structures),
546     while $w^\prime$ is a purely empirical function. A more detailed
547     description of the functional parts and variables in this potential
548     can be found in the original SSD
549     articles.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md,Ichiye03}
550    
551 mmeineke 1068 Since SSD/E is a single-point {\it dipolar} model, the force
552 mmeineke 1044 calculations are simplified significantly relative to the standard
553     {\it charged} multi-point models. In the original Monte Carlo
554     simulations using this model, Ichiye {\it et al.} reported that using
555     SSD decreased computer time by a factor of 6-7 compared to other
556     models.\cite{liu96:new_model} What is most impressive is that these savings
557     did not come at the expense of accurate depiction of the liquid state
558 mmeineke 1068 properties. Indeed, SSD/E maintains reasonable agreement with the Head-Gordon
559 mmeineke 1044 diffraction data for the structural features of liquid
560 mmeineke 1068 water.\cite{hura00,liu96:new_model} Additionally, the dynamical properties
561     exhibited by SSD/E agree with experiment better than those of more
562 mmeineke 1044 computationally expensive models (like TIP3P and
563     SPC/E).\cite{chandra99:ssd_md} The combination of speed and accurate depiction
564 mmeineke 1068 of solvent properties makes SSD/E a very attractive model for the
565 mmeineke 1044 simulation of large scale biochemical simulations.
566    
567     Recent constant pressure simulations revealed issues in the original
568     SSD model that led to lower than expected densities at all target
569     pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse}
570     is therefore SSD/E, a density corrected derivative of SSD that
571     exhibits improved liquid structure and transport behavior. If the use
572     of a reaction field long-range interaction correction is desired, it
573     is recommended that the parameters be modified to those of the SSD/RF
574 mmeineke 1112 model (an SSD variant parameterized for reaction field). Solvent parameters can be easily modified in an accompanying
575 mmeineke 1068 \texttt{.bass} file as illustrated in the scheme below. A table of the
576 mmeineke 1044 parameter values and the drawbacks and benefits of the different
577 mmeineke 1054 density corrected SSD models can be found in
578     reference~\cite{Gezelter04}.
579 mmeineke 1044
580 mmeineke 1089 \begin{lstlisting}[float,caption={[A simulation of {\sc ssd} water]A portion of a \texttt{.bass} file showing a simulation including {\sc ssd} water.},label={sch:ssd}]
581 mmeineke 1044
582     #include "water.mdl"
583    
584     nComponents = 1;
585     component{
586     type = "SSD_water";
587     nMol = 864;
588     }
589    
590     initialConfig = "liquidWater.init";
591    
592     forceField = "DUFF";
593    
594     /*
595     * The following two flags set the cutoff
596     * radius for the electrostatic forces
597     * as well as the skin thickness of the switching
598     * function.
599     */
600    
601     electrostaticCutoffRadius = 9.2;
602     electrostaticSkinThickness = 1.38;
603    
604     \end{lstlisting}
605    
606    
607 mmeineke 1051 \subsection{\label{oopseSec:eam}Embedded Atom Method}
608 mmeineke 1044
609 mmeineke 1054 There are Molecular Dynamics packages which have the
610 mmeineke 1044 capacity to simulate metallic systems, including some that have
611     parallel computational abilities\cite{plimpton93}. Potentials that
612     describe bonding transition metal
613 mmeineke 1068 systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have an
614 mmeineke 1044 attractive interaction which models ``Embedding''
615     a positively charged metal ion in the electron density due to the
616     free valance ``sea'' of electrons created by the surrounding atoms in
617 mmeineke 1068 the system. A mostly-repulsive pairwise part of the potential
618 mmeineke 1044 describes the interaction of the positively charged metal core ions
619     with one another. A particular potential description called the
620     Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}({\sc eam}) that has
621     particularly wide adoption has been selected for inclusion in {\sc oopse}. A
622 mmeineke 1068 good review of {\sc eam} and other metallic potential formulations was written
623 mmeineke 1044 by Voter.\cite{voter}
624    
625     The {\sc eam} potential has the form:
626     \begin{eqnarray}
627     V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
628 mmeineke 1114 \phi_{ij}({\bf r}_{ij}), \\
629     \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij}),
630 mmeineke 1068 \end{eqnarray}
631 mmeineke 1083 where $F_{i} $ is the embedding function that equates the energy
632     required to embed a positively-charged core ion $i$ into a linear
633     superposition of spherically averaged atomic electron densities given
634     by $\rho_{i}$. $\phi_{ij}$ is a primarily repulsive pairwise
635     interaction between atoms $i$ and $j$. In the original formulation of
636     {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term,
637     however in later refinements to {\sc eam} have shown that non-uniqueness
638     between $F$ and $\phi$ allow for more general forms for
639     $\phi$.\cite{Daw89} There is a cutoff distance, $r_{cut}$, which
640     limits the summations in the {\sc eam} equation to the few dozen atoms
641 mmeineke 1044 surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
642 mmeineke 1083 interactions. Foiles \emph{et al}.~fit {\sc eam} potentials for the fcc
643     metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals.\cite{FBD86}
644 mmeineke 1089 These fits are included in {\sc oopse}.
645 mmeineke 1044
646 mmeineke 1051 \subsection{\label{oopseSec:pbc}Periodic Boundary Conditions}
647 mmeineke 1044
648     \newcommand{\roundme}{\operatorname{round}}
649    
650 mmeineke 1068 \textit{Periodic boundary conditions} are widely used to simulate bulk properties with a relatively small number of particles. The
651     simulation box is replicated throughout space to form an infinite
652     lattice. During the simulation, when a particle moves in the primary
653     cell, its image in other cells move in exactly the same direction with
654     exactly the same orientation. Thus, as a particle leaves the primary
655     cell, one of its images will enter through the opposite face. If the
656     simulation box is large enough to avoid ``feeling'' the symmetries of
657     the periodic lattice, surface effects can be ignored. The available
658     periodic cells in OOPSE are cubic, orthorhombic and parallelepiped. We
659 mmeineke 1083 use a $3 \times 3$ matrix, $\mathsf{H}$, to describe the shape and
660     size of the simulation box. $\mathsf{H}$ is defined:
661 mmeineke 1044 \begin{equation}
662 mmeineke 1114 \mathsf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z ),
663 mmeineke 1044 \end{equation}
664 mmeineke 1114 where $\mathbf{h}_{\alpha}$ is the column vector of the $\alpha$ axis of the
665 mmeineke 1068 box. During the course of the simulation both the size and shape of
666 mmeineke 1083 the box can be changed to allow volume fluctuations when constraining
667 mmeineke 1068 the pressure.
668 mmeineke 1044
669 mmeineke 1068 A real space vector, $\mathbf{r}$ can be transformed in to a box space
670     vector, $\mathbf{s}$, and back through the following transformations:
671     \begin{align}
672 mmeineke 1114 \mathbf{s} &= \mathsf{H}^{-1} \mathbf{r}, \\
673     \mathbf{r} &= \mathsf{H} \mathbf{s}.
674 mmeineke 1068 \end{align}
675     The vector $\mathbf{s}$ is now a vector expressed as the number of box
676     lengths in the $\mathbf{h}_x$, $\mathbf{h}_y$, and $\mathbf{h}_z$
677     directions. To find the minimum image of a vector $\mathbf{r}$, we
678     first convert it to its corresponding vector in box space, and then,
679 mmeineke 1089 cast each element to lie in the range $[-0.5,0.5]$:
680 mmeineke 1044 \begin{equation}
681 mmeineke 1114 s_{i}^{\prime}=s_{i}-\roundme(s_{i}),
682 mmeineke 1044 \end{equation}
683 mmeineke 1114 where $s_i$ is the $i$th element of $\mathbf{s}$, and
684 mmeineke 1089 $\roundme(s_i)$ is given by
685 mmeineke 1044 \begin{equation}
686 mmeineke 1068 \roundme(x) =
687     \begin{cases}
688 mmeineke 1114 \lfloor x+0.5 \rfloor & \text{if $x \ge 0$,} \\
689     \lceil x-0.5 \rceil & \text{if $x < 0$.}
690 mmeineke 1068 \end{cases}
691 mmeineke 1044 \end{equation}
692 mmeineke 1068 Here $\lfloor x \rfloor$ is the floor operator, and gives the largest
693     integer value that is not greater than $x$, and $\lceil x \rceil$ is
694     the ceiling operator, and gives the smallest integer that is not less
695     than $x$. For example, $\roundme(3.6)=4$, $\roundme(3.1)=3$,
696     $\roundme(-3.6)=-4$, $\roundme(-3.1)=-3$.
697 mmeineke 1044
698     Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
699 mmeineke 1068 transforming back to real space,
700 mmeineke 1044 \begin{equation}
701 mmeineke 1114 \mathbf{r}^{\prime}=\mathsf{H}^{-1}\mathbf{s}^{\prime}.%
702 mmeineke 1044 \end{equation}
703 mmeineke 1068 In this way, particles are allowed to diffuse freely in $\mathbf{r}$,
704     but their minimum images, $\mathbf{r}^{\prime}$ are used to compute
705 mmeineke 1083 the inter-atomic forces.
706 mmeineke 1044
707    
708 mmeineke 1051 \section{\label{oopseSec:IOfiles}Input and Output Files}
709 mmeineke 1044
710     \subsection{{\sc bass} and Model Files}
711    
712 mmeineke 1071 Every {\sc oopse} simulation begins with a Bizarre Atom Simulation
713     Syntax ({\sc bass}) file. {\sc bass} is a script syntax that is parsed
714     by {\sc oopse} at runtime. The {\sc bass} file allows for the user to
715     completely describe the system they wish to simulate, as well as tailor
716     {\sc oopse}'s behavior during the simulation. {\sc bass} files are
717     denoted with the extension
718 mmeineke 1044 \texttt{.bass}, an example file is shown in
719 mmeineke 1071 Scheme~\ref{sch:bassExample}.
720 mmeineke 1044
721 mmeineke 1071 \begin{lstlisting}[float,caption={[An example of a complete {\sc bass} file] An example showing a complete {\sc bass} file.},label={sch:bassExample}]
722 mmeineke 1044
723 mmeineke 1071 molecule{
724     name = "Ar";
725     nAtoms = 1;
726     atom[0]{
727     type="Ar";
728     position( 0.0, 0.0, 0.0 );
729     }
730     }
731    
732     nComponents = 1;
733     component{
734     type = "Ar";
735     nMol = 108;
736     }
737    
738     initialConfig = "./argon.init";
739    
740     forceField = "LJ";
741 mmeineke 1083 ensemble = "NVE"; // specify the simulation ensemble
742 mmeineke 1071 dt = 1.0; // the time step for integration
743     runTime = 1e3; // the total simulation run time
744     sampleTime = 100; // trajectory file frequency
745     statusTime = 50; // statistics file frequency
746    
747     \end{lstlisting}
748    
749 mmeineke 1054 Within the \texttt{.bass} file it is necessary to provide a complete
750 mmeineke 1044 description of the molecule before it is actually placed in the
751 mmeineke 1071 simulation. The {\sc bass} syntax was originally developed with this
752     goal in mind, and allows for the specification of all the atoms in a
753     molecular prototype, as well as any bonds, bends, or torsions. These
754 mmeineke 1044 descriptions can become lengthy for complex molecules, and it would be
755 mmeineke 1071 inconvenient to duplicate the simulation at the beginning of each {\sc
756     bass} script. Addressing this issue {\sc bass} allows for the
757     inclusion of model files at the top of a \texttt{.bass} file. These
758     model files, denoted with the \texttt{.mdl} extension, allow the user
759     to describe a molecular prototype once, then simply include it into
760     each simulation containing that molecule. Returning to the example in
761     Scheme~\ref{sch:bassExample}, the \texttt{.mdl} file's contents would
762     be Scheme~\ref{sch:mdlExample}, and the new \texttt{.bass} file would
763     become Scheme~\ref{sch:bassExPrime}.
764 mmeineke 1044
765 mmeineke 1071 \begin{lstlisting}[float,caption={An example \texttt{.mdl} file.},label={sch:mdlExample}]
766    
767     molecule{
768     name = "Ar";
769     nAtoms = 1;
770     atom[0]{
771     type="Ar";
772     position( 0.0, 0.0, 0.0 );
773     }
774     }
775    
776     \end{lstlisting}
777    
778     \begin{lstlisting}[float,caption={Revised {\sc bass} example.},label={sch:bassExPrime}]
779    
780     #include "argon.mdl"
781    
782     nComponents = 1;
783     component{
784     type = "Ar";
785     nMol = 108;
786     }
787    
788     initialConfig = "./argon.init";
789    
790     forceField = "LJ";
791     ensemble = "NVE";
792     dt = 1.0;
793     runTime = 1e3;
794     sampleTime = 100;
795     statusTime = 50;
796    
797     \end{lstlisting}
798    
799 mmeineke 1051 \subsection{\label{oopseSec:coordFiles}Coordinate Files}
800 mmeineke 1044
801     The standard format for storage of a systems coordinates is a modified
802     xyz-file syntax, the exact details of which can be seen in
803 mmeineke 1071 Scheme~\ref{sch:dumpFormat}. As all bonding and molecular information
804     is stored in the \texttt{.bass} and \texttt{.mdl} files, the
805     coordinate files are simply the complete set of coordinates for each
806     atom at a given simulation time. One important note, although the
807     simulation propagates the complete rotation matrix, directional
808     entities are written out using quanternions, to save space in the
809     output files.
810 mmeineke 1044
811 mmeineke 1089 \begin{lstlisting}[float,caption={[The format of the coordinate files]Shows the format of the coordinate files. The fist line is the number of atoms. The second line begins with the time stamp followed by the three $\mathsf{H}$ column vectors. It is important to note, that for extended system ensembles, additional information pertinent to the integrators may be stored on this line as well. The next lines are the atomic coordinates for all atoms in the system. First is the name followed by position, velocity, quanternions, and lastly angular velocities.},label=sch:dumpFormat]
812 mmeineke 1071
813     nAtoms
814     time; Hxx Hyx Hzx; Hxy Hyy Hzy; Hxz Hyz Hzz;
815     Name1 x y z vx vy vz q0 q1 q2 q3 jx jy jz
816     Name2 x y z vx vy vz q0 q1 q2 q3 jx jy jz
817     etc...
818    
819     \end{lstlisting}
820    
821    
822     There are three major files used by {\sc oopse} written in the
823     coordinate format, they are as follows: the initialization file
824     (\texttt{.init}), the simulation trajectory file (\texttt{.dump}), and
825     the final coordinates of the simulation. The initialization file is
826     necessary for {\sc oopse} to start the simulation with the proper
827     coordinates, and is generated before the simulation run. The
828     trajectory file is created at the beginning of the simulation, and is
829     used to store snapshots of the simulation at regular intervals. The
830     first frame is a duplication of the
831     \texttt{.init} file, and each subsequent frame is appended to the file
832     at an interval specified in the \texttt{.bass} file with the
833     \texttt{sampleTime} flag. The final coordinate file is the end of run file. The
834 mmeineke 1054 \texttt{.eor} file stores the final configuration of the system for a
835 mmeineke 1044 given simulation. The file is updated at the same time as the
836 mmeineke 1071 \texttt{.dump} file, however, it only contains the most recent
837 mmeineke 1044 frame. In this way, an \texttt{.eor} file may be used as the
838 mmeineke 1071 initialization file to a second simulation in order to continue a
839     simulation or recover one from a processor that has crashed during the
840     course of the run.
841 mmeineke 1044
842 mmeineke 1054 \subsection{\label{oopseSec:initCoords}Generation of Initial Coordinates}
843 mmeineke 1044
844 mmeineke 1071 As was stated in Sec.~\ref{oopseSec:coordFiles}, an initialization
845     file is needed to provide the starting coordinates for a
846 mmeineke 1083 simulation. The {\sc oopse} package provides several system building
847     programs to aid in the creation of the \texttt{.init}
848     file. The programs use {\sc bass}, and will recognize
849 mmeineke 1071 arguments and parameters in the \texttt{.bass} file that would
850     otherwise be ignored by the simulation.
851 mmeineke 1044
852     \subsection{The Statistics File}
853    
854 mmeineke 1071 The last output file generated by {\sc oopse} is the statistics
855     file. This file records such statistical quantities as the
856     instantaneous temperature, volume, pressure, etc. It is written out
857     with the frequency specified in the \texttt{.bass} file with the
858     \texttt{statusTime} keyword. The file allows the user to observe the
859     system variables as a function of simulation time while the simulation
860     is in progress. One useful function the statistics file serves is to
861     monitor the conserved quantity of a given simulation ensemble, this
862     allows the user to observe the stability of the integrator. The
863     statistics file is denoted with the \texttt{.stat} file extension.
864 mmeineke 1044
865 mmeineke 1051 \section{\label{oopseSec:mechanics}Mechanics}
866 mmeineke 1044
867 mmeineke 1087 \subsection{\label{oopseSec:integrate}Integrating the Equations of Motion: the
868     DLM method}
869    
870     The default method for integrating the equations of motion in {\sc
871     oopse} is a velocity-Verlet version of the symplectic splitting method
872     proposed by Dullweber, Leimkuhler and McLachlan
873     (DLM).\cite{Dullweber1997} When there are no directional atoms or
874     rigid bodies present in the simulation, this integrator becomes the
875     standard velocity-Verlet integrator which is known to sample the
876 mmeineke 1089 microcanonical (NVE) ensemble.\cite{Frenkel1996}
877 mmeineke 1087
878     Previous integration methods for orientational motion have problems
879     that are avoided in the DLM method. Direct propagation of the Euler
880     angles has a known $1/\sin\theta$ divergence in the equations of
881     motion for $\phi$ and $\psi$,\cite{allen87:csl} leading to
882     numerical instabilities any time one of the directional atoms or rigid
883     bodies has an orientation near $\theta=0$ or $\theta=\pi$. More
884     modern quaternion-based integration methods have relatively poor
885     energy conservation. While quaternions work well for orientational
886     motion in other ensembles, the microcanonical ensemble has a
887     constant energy requirement that is quite sensitive to errors in the
888     equations of motion. An earlier implementation of {\sc oopse}
889     utilized quaternions for propagation of rotational motion; however, a
890     detailed investigation showed that they resulted in a steady drift in
891     the total energy, something that has been observed by
892     Laird {\it et al.}\cite{Laird97}
893    
894 mmeineke 1044 The key difference in the integration method proposed by Dullweber
895 mmeineke 1087 \emph{et al.} is that the entire $3 \times 3$ rotation matrix is
896     propagated from one time step to the next. In the past, this would not
897     have been feasible, since the rotation matrix for a single body has
898     nine elements compared with the more memory-efficient methods (using
899     three Euler angles or 4 quaternions). Computer memory has become much
900     less costly in recent years, and this can be translated into
901     substantial benefits in energy conservation.
902 mmeineke 1044
903 mmeineke 1087 The basic equations of motion being integrated are derived from the
904     Hamiltonian for conservative systems containing rigid bodies,
905     \begin{equation}
906     H = \sum_{i} \left( \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
907     \frac{1}{2} {\bf j}_i^T \cdot \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot
908     {\bf j}_i \right) +
909 mmeineke 1114 V\left(\left\{{\bf r}\right\}, \left\{\mathsf{A}\right\}\right),
910 mmeineke 1087 \end{equation}
911 mmeineke 1114 where ${\bf r}_i$ and ${\bf v}_i$ are the cartesian position vector
912 mmeineke 1089 and velocity of the center of mass of particle $i$, and ${\bf j}_i$,
913     $\overleftrightarrow{\mathsf{I}}_i$ are the body-fixed angular
914     momentum and moment of inertia tensor respectively, and the
915     superscript $T$ denotes the transpose of the vector. $\mathsf{A}_i$
916 mmeineke 1087 is the $3 \times 3$ rotation matrix describing the instantaneous
917     orientation of the particle. $V$ is the potential energy function
918     which may depend on both the positions $\left\{{\bf r}\right\}$ and
919     orientations $\left\{\mathsf{A}\right\}$ of all particles. The
920     equations of motion for the particle centers of mass are derived from
921     Hamilton's equations and are quite simple,
922     \begin{eqnarray}
923 mmeineke 1114 \dot{{\bf r}} & = & {\bf v}, \\
924     \dot{{\bf v}} & = & \frac{{\bf f}}{m},
925 mmeineke 1087 \end{eqnarray}
926     where ${\bf f}$ is the instantaneous force on the center of mass
927     of the particle,
928     \begin{equation}
929     {\bf f} = - \frac{\partial}{\partial
930     {\bf r}} V(\left\{{\bf r}(t)\right\}, \left\{\mathsf{A}(t)\right\}).
931     \end{equation}
932 mmeineke 1044
933 mmeineke 1087 The equations of motion for the orientational degrees of freedom are
934     \begin{eqnarray}
935     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
936 mmeineke 1114 \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right),\\
937 mmeineke 1087 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
938     \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
939 mmeineke 1114 V}{\partial \mathsf{A}} \right).
940 mmeineke 1087 \end{eqnarray}
941     In these equations of motion, the $\mbox{skew}$ matrix of a vector
942     ${\bf v} = \left( v_1, v_2, v_3 \right)$ is defined:
943     \begin{equation}
944     \mbox{skew}\left( {\bf v} \right) := \left(
945     \begin{array}{ccc}
946     0 & v_3 & - v_2 \\
947     -v_3 & 0 & v_1 \\
948     v_2 & -v_1 & 0
949     \end{array}
950 mmeineke 1114 \right).
951 mmeineke 1087 \end{equation}
952     The $\mbox{rot}$ notation refers to the mapping of the $3 \times 3$
953     rotation matrix to a vector of orientations by first computing the
954     skew-symmetric part $\left(\mathsf{A} - \mathsf{A}^{T}\right)$ and
955     then associating this with a length 3 vector by inverting the
956     $\mbox{skew}$ function above:
957     \begin{equation}
958     \mbox{rot}\left(\mathsf{A}\right) := \mbox{ skew}^{-1}\left(\mathsf{A}
959 mmeineke 1114 - \mathsf{A}^{T} \right).
960 mmeineke 1087 \end{equation}
961     Written this way, the $\mbox{rot}$ operation creates a set of
962     conjugate angle coordinates to the body-fixed angular momenta
963     represented by ${\bf j}$. This equation of motion for angular momenta
964     is equivalent to the more familiar body-fixed forms,
965     \begin{eqnarray}
966     \dot{j_{x}} & = & \tau^b_x(t) +
967 mmeineke 1114 \left(\overleftrightarrow{\mathsf{I}}_{yy} - \overleftrightarrow{\mathsf{I}}_{zz} \right) j_y j_z, \\
968 mmeineke 1087 \dot{j_{y}} & = & \tau^b_y(t) +
969 mmeineke 1114 \left(\overleftrightarrow{\mathsf{I}}_{zz} - \overleftrightarrow{\mathsf{I}}_{xx} \right) j_z j_x,\\
970 mmeineke 1087 \dot{j_{z}} & = & \tau^b_z(t) +
971 mmeineke 1114 \left(\overleftrightarrow{\mathsf{I}}_{xx} - \overleftrightarrow{\mathsf{I}}_{yy} \right) j_x j_y,
972 mmeineke 1087 \end{eqnarray}
973     which utilize the body-fixed torques, ${\bf \tau}^b$. Torques are
974     most easily derived in the space-fixed frame,
975     \begin{equation}
976 mmeineke 1114 {\bf \tau}^b(t) = \mathsf{A}(t) \cdot {\bf \tau}^s(t),
977 mmeineke 1087 \end{equation}
978     where the torques are either derived from the forces on the
979     constituent atoms of the rigid body, or for directional atoms,
980     directly from derivatives of the potential energy,
981     \begin{equation}
982     {\bf \tau}^s(t) = - \hat{\bf u}(t) \times \left( \frac{\partial}
983     {\partial \hat{\bf u}} V\left(\left\{ {\bf r}(t) \right\}, \left\{
984     \mathsf{A}(t) \right\}\right) \right).
985     \end{equation}
986     Here $\hat{\bf u}$ is a unit vector pointing along the principal axis
987     of the particle in the space-fixed frame.
988    
989     The DLM method uses a Trotter factorization of the orientational
990     propagator. This has three effects:
991     \begin{enumerate}
992     \item the integrator is area-preserving in phase space (i.e. it is
993     {\it symplectic}),
994     \item the integrator is time-{\it reversible}, making it suitable for Hybrid
995     Monte Carlo applications, and
996 mmeineke 1089 \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
997 mmeineke 1087 for timesteps of length $h$.
998     \end{enumerate}
999    
1000     The integration of the equations of motion is carried out in a
1001 mmeineke 1089 velocity-Verlet style 2-part algorithm, where $h= \delta t$:
1002 mmeineke 1087
1003     {\tt moveA:}
1004 mmeineke 1089 \begin{align*}
1005     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
1006 mmeineke 1114 + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
1007 mmeineke 1089 %
1008     {\bf r}(t + h) &\leftarrow {\bf r}(t)
1009 mmeineke 1114 + h {\bf v}\left(t + h / 2 \right), \\
1010 mmeineke 1089 %
1011     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
1012 mmeineke 1114 + \frac{h}{2} {\bf \tau}^b(t), \\
1013 mmeineke 1089 %
1014     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
1015 mmeineke 1114 (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
1016 mmeineke 1089 \end{align*}
1017 mmeineke 1087
1018 mmeineke 1089 In this context, the $\mathrm{rotate}$ function is the reversible product
1019 mmeineke 1087 of the three body-fixed rotations,
1020     \begin{equation}
1021 mmeineke 1089 \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
1022 mmeineke 1087 \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y /
1023 mmeineke 1114 2) \cdot \mathsf{G}_x(a_x /2),
1024 mmeineke 1087 \end{equation}
1025     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$, rotates
1026     both the rotation matrix ($\mathsf{A}$) and the body-fixed angular
1027     momentum (${\bf j}$) by an angle $\theta$ around body-fixed axis
1028     $\alpha$,
1029     \begin{equation}
1030     \mathsf{G}_\alpha( \theta ) = \left\{
1031     \begin{array}{lcl}
1032 mmeineke 1114 \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
1033     {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf j}(0).
1034 mmeineke 1087 \end{array}
1035     \right.
1036     \end{equation}
1037     $\mathsf{R}_\alpha$ is a quadratic approximation to
1038     the single-axis rotation matrix. For example, in the small-angle
1039     limit, the rotation matrix around the body-fixed x-axis can be
1040     approximated as
1041     \begin{equation}
1042     \mathsf{R}_x(\theta) \approx \left(
1043     \begin{array}{ccc}
1044     1 & 0 & 0 \\
1045     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
1046     \theta^2 / 4} \\
1047     0 & \frac{\theta}{1+
1048     \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4}
1049     \end{array}
1050     \right).
1051     \end{equation}
1052     All other rotations follow in a straightforward manner.
1053    
1054     After the first part of the propagation, the forces and body-fixed
1055     torques are calculated at the new positions and orientations
1056    
1057     {\tt doForces:}
1058 mmeineke 1089 \begin{align*}
1059     {\bf f}(t + h) &\leftarrow
1060 mmeineke 1114 - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
1061 mmeineke 1089 %
1062     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
1063 mmeineke 1114 \times \frac{\partial V}{\partial {\bf u}}, \\
1064 mmeineke 1089 %
1065     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
1066 mmeineke 1114 \cdot {\bf \tau}^s(t + h).
1067 mmeineke 1089 \end{align*}
1068 mmeineke 1087
1069     {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
1070     $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
1071     torques have been obtained at the new time step, the velocities can be
1072     advanced to the same time value.
1073    
1074     {\tt moveB:}
1075 mmeineke 1089 \begin{align*}
1076     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2 \right)
1077 mmeineke 1114 + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
1078 mmeineke 1089 %
1079     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2 \right)
1080 mmeineke 1114 + \frac{h}{2} {\bf \tau}^b(t + h) .
1081 mmeineke 1089 \end{align*}
1082 mmeineke 1087
1083     The matrix rotations used in the DLM method end up being more costly
1084     computationally than the simpler arithmetic quaternion
1085     propagation. With the same time step, a 1000-molecule water simulation
1086     shows an average 7\% increase in computation time using the DLM method
1087     in place of quaternions. This cost is more than justified when
1088     comparing the energy conservation of the two methods as illustrated in
1089 mmeineke 1089 Fig.~\ref{timestep}.
1090 mmeineke 1087
1091 mmeineke 1044 \begin{figure}
1092 mmeineke 1045 \centering
1093     \includegraphics[width=\linewidth]{timeStep.eps}
1094 mmeineke 1087 \caption[Energy conservation for quaternion versus DLM dynamics]{Energy conservation using quaternion based integration versus
1095     the method proposed by Dullweber \emph{et al.} with increasing time
1096     step. For each time step, the dotted line is total energy using the
1097     DLM integrator, and the solid line comes from the quaternion
1098     integrator. The larger time step plots are shifted up from the true
1099     energy baseline for clarity.}
1100 mmeineke 1044 \label{timestep}
1101     \end{figure}
1102    
1103 mmeineke 1089 In Fig.~\ref{timestep}, the resulting energy drift at various time
1104 mmeineke 1087 steps for both the DLM and quaternion integration schemes is
1105     compared. All of the 1000 molecule water simulations started with the
1106 mmeineke 1044 same configuration, and the only difference was the method for
1107     handling rotational motion. At time steps of 0.1 and 0.5 fs, both
1108 mmeineke 1087 methods for propagating molecule rotation conserve energy fairly well,
1109 mmeineke 1044 with the quaternion method showing a slight energy drift over time in
1110     the 0.5 fs time step simulation. At time steps of 1 and 2 fs, the
1111 mmeineke 1087 energy conservation benefits of the DLM method are clearly
1112 mmeineke 1044 demonstrated. Thus, while maintaining the same degree of energy
1113     conservation, one can take considerably longer time steps, leading to
1114     an overall reduction in computation time.
1115    
1116 mmeineke 1087 There is only one specific keyword relevant to the default integrator,
1117     and that is the time step for integrating the equations of motion.
1118 mmeineke 1044
1119 mmeineke 1087 \begin{center}
1120     \begin{tabular}{llll}
1121     {\bf variable} & {\bf {\tt .bass} keyword} & {\bf units} & {\bf
1122     default value} \\
1123 mmeineke 1089 $h$ & {\tt dt = 2.0;} & fs & none
1124 mmeineke 1087 \end{tabular}
1125     \end{center}
1126 mmeineke 1044
1127     \subsection{\label{sec:extended}Extended Systems for other Ensembles}
1128    
1129 mmeineke 1087 {\sc oopse} implements a number of extended system integrators for
1130     sampling from other ensembles relevant to chemical physics. The
1131     integrator can selected with the {\tt ensemble} keyword in the
1132     {\tt .bass} file:
1133 mmeineke 1044
1134 mmeineke 1087 \begin{center}
1135     \begin{tabular}{lll}
1136     {\bf Integrator} & {\bf Ensemble} & {\bf {\tt .bass} line} \\
1137 mmeineke 1089 NVE & microcanonical & {\tt ensemble = NVE; } \\
1138     NVT & canonical & {\tt ensemble = NVT; } \\
1139     NPTi & isobaric-isothermal & {\tt ensemble = NPTi;} \\
1140     & (with isotropic volume changes) & \\
1141     NPTf & isobaric-isothermal & {\tt ensemble = NPTf;} \\
1142     & (with changes to box shape) & \\
1143     NPTxyz & approximate isobaric-isothermal & {\tt ensemble = NPTxyz;} \\
1144     & (with separate barostats on each box dimension) & \\
1145 mmeineke 1087 \end{tabular}
1146     \end{center}
1147 mmeineke 1044
1148 mmeineke 1089 The relatively well-known Nos\'e-Hoover thermostat\cite{Hoover85} is
1149     implemented in {\sc oopse}'s NVT integrator. This method couples an
1150     extra degree of freedom (the thermostat) to the kinetic energy of the
1151     system, and has been shown to sample the canonical distribution in the
1152     system degrees of freedom while conserving a quantity that is, to
1153     within a constant, the Helmholtz free energy.\cite{melchionna93}
1154 mmeineke 1044
1155 mmeineke 1087 NPT algorithms attempt to maintain constant pressure in the system by
1156     coupling the volume of the system to a barostat. {\sc oopse} contains
1157     three different constant pressure algorithms. The first two, NPTi and
1158     NPTf have been shown to conserve a quantity that is, to within a
1159 mmeineke 1089 constant, the Gibbs free energy.\cite{melchionna93} The Melchionna
1160     modification to the Hoover barostat is implemented in both NPTi and
1161     NPTf. NPTi allows only isotropic changes in the simulation box, while
1162     box {\it shape} variations are allowed in NPTf. The NPTxyz integrator
1163     has {\it not} been shown to sample from the isobaric-isothermal
1164     ensemble. It is useful, however, in that it maintains orthogonality
1165     for the axes of the simulation box while attempting to equalize
1166     pressure along the three perpendicular directions in the box.
1167 mmeineke 1044
1168 mmeineke 1087 Each of the extended system integrators requires additional keywords
1169     to set target values for the thermodynamic state variables that are
1170     being held constant. Keywords are also required to set the
1171     characteristic decay times for the dynamics of the extended
1172     variables.
1173    
1174 mmeineke 1089 \begin{center}
1175 mmeineke 1087 \begin{tabular}{llll}
1176     {\bf variable} & {\bf {\tt .bass} keyword} & {\bf units} & {\bf
1177     default value} \\
1178     $T_{\mathrm{target}}$ & {\tt targetTemperature = 300;} & K & none \\
1179     $P_{\mathrm{target}}$ & {\tt targetPressure = 1;} & atm & none \\
1180     $\tau_T$ & {\tt tauThermostat = 1e3;} & fs & none \\
1181     $\tau_B$ & {\tt tauBarostat = 5e3;} & fs & none \\
1182     & {\tt resetTime = 200;} & fs & none \\
1183 mmeineke 1089 & {\tt useInitialExtendedSystemState = true;} & logical &
1184     true
1185 mmeineke 1087 \end{tabular}
1186 mmeineke 1089 \end{center}
1187 mmeineke 1087
1188     Two additional keywords can be used to either clear the extended
1189     system variables periodically ({\tt resetTime}), or to maintain the
1190     state of the extended system variables between simulations ({\tt
1191     useInitialExtendedSystemState}). More details on these variables
1192     and their use in the integrators follows below.
1193    
1194 mmeineke 1089 \subsection{\label{oopseSec:noseHooverThermo}Nos\'{e}-Hoover Thermostatting}
1195 mmeineke 1087
1196     The Nos\'e-Hoover equations of motion are given by\cite{Hoover85}
1197 mmeineke 1044 \begin{eqnarray}
1198 mmeineke 1114 \dot{{\bf r}} & = & {\bf v}, \\
1199     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
1200 mmeineke 1087 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1201 mmeineke 1114 \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
1202 mmeineke 1087 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
1203     \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1204 mmeineke 1114 V}{\partial \mathsf{A}} \right) - \chi {\bf j}.
1205 mmeineke 1044 \label{eq:nosehoovereom}
1206     \end{eqnarray}
1207    
1208     $\chi$ is an ``extra'' variable included in the extended system, and
1209     it is propagated using the first order equation of motion
1210     \begin{equation}
1211 mmeineke 1087 \dot{\chi} = \frac{1}{\tau_{T}^2} \left( \frac{T}{T_{\mathrm{target}}} - 1 \right).
1212 mmeineke 1044 \label{eq:nosehooverext}
1213     \end{equation}
1214    
1215 mmeineke 1087 The instantaneous temperature $T$ is proportional to the total kinetic
1216     energy (both translational and orientational) and is given by
1217     \begin{equation}
1218     T = \frac{2 K}{f k_B}
1219     \end{equation}
1220     Here, $f$ is the total number of degrees of freedom in the system,
1221     \begin{equation}
1222 mmeineke 1114 f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
1223 mmeineke 1087 \end{equation}
1224     and $K$ is the total kinetic energy,
1225     \begin{equation}
1226     K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
1227     \sum_{i=1}^{N_{\mathrm{orient}}} \frac{1}{2} {\bf j}_i^T \cdot
1228 mmeineke 1114 \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
1229 mmeineke 1087 \end{equation}
1230 mmeineke 1044
1231 mmeineke 1087 In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
1232     relaxation of the temperature to the target value. To set values for
1233     $\tau_T$ or $T_{\mathrm{target}}$ in a simulation, one would use the
1234     {\tt tauThermostat} and {\tt targetTemperature} keywords in the {\tt
1235     .bass} file. The units for {\tt tauThermostat} are fs, and the units
1236     for the {\tt targetTemperature} are degrees K. The integration of
1237     the equations of motion is carried out in a velocity-Verlet style 2
1238     part algorithm:
1239    
1240     {\tt moveA:}
1241 mmeineke 1089 \begin{align*}
1242 mmeineke 1114 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1243 mmeineke 1089 %
1244     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
1245     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1246 mmeineke 1114 \chi(t)\right), \\
1247 mmeineke 1089 %
1248     {\bf r}(t + h) &\leftarrow {\bf r}(t)
1249 mmeineke 1114 + h {\bf v}\left(t + h / 2 \right) ,\\
1250 mmeineke 1089 %
1251     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
1252     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1253 mmeineke 1114 \chi(t) \right) ,\\
1254 mmeineke 1089 %
1255     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
1256     \left(h * {\bf j}(t + h / 2)
1257 mmeineke 1114 \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
1258 mmeineke 1089 %
1259     \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
1260     + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
1261 mmeineke 1114 {T_{\mathrm{target}}} - 1 \right) .
1262 mmeineke 1089 \end{align*}
1263 mmeineke 1087
1264 mmeineke 1089 Here $\mathrm{rotate}(h * {\bf j}
1265 mmeineke 1087 \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic Trotter
1266     factorization of the three rotation operations that was discussed in
1267     the section on the DLM integrator. Note that this operation modifies
1268     both the rotation matrix $\mathsf{A}$ and the angular momentum ${\bf
1269     j}$. {\tt moveA} propagates velocities by a half time step, and
1270     positional degrees of freedom by a full time step. The new positions
1271     (and orientations) are then used to calculate a new set of forces and
1272     torques in exactly the same way they are calculated in the {\tt
1273     doForces} portion of the DLM integrator.
1274    
1275     Once the forces and torques have been obtained at the new time step,
1276     the temperature, velocities, and the extended system variable can be
1277     advanced to the same time value.
1278    
1279     {\tt moveB:}
1280 mmeineke 1089 \begin{align*}
1281     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1282 mmeineke 1114 \left\{{\bf j}(t + h)\right\}, \\
1283 mmeineke 1089 %
1284     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1285     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
1286 mmeineke 1114 {T_{\mathrm{target}}} - 1 \right), \\
1287 mmeineke 1089 %
1288     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
1289     + h / 2 \right) + \frac{h}{2} \left(
1290     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
1291 mmeineke 1114 \chi(t h)\right) ,\\
1292 mmeineke 1089 %
1293     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
1294     + h / 2 \right) + \frac{h}{2}
1295     \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
1296 mmeineke 1114 \chi(t + h) \right) .
1297 mmeineke 1089 \end{align*}
1298 mmeineke 1087
1299 mmeineke 1089 Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to caclculate
1300     $T(t + h)$ as well as $\chi(t + h)$, they indirectly depend on their
1301     own values at time $t + h$. {\tt moveB} is therefore done in an
1302     iterative fashion until $\chi(t + h)$ becomes self-consistent. The
1303     relative tolerance for the self-consistency check defaults to a value
1304     of $\mbox{10}^{-6}$, but {\sc oopse} will terminate the iteration
1305     after 4 loops even if the consistency check has not been satisfied.
1306 mmeineke 1087
1307     The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for the
1308     extended system that is, to within a constant, identical to the
1309 mmeineke 1089 Helmholtz free energy,\cite{melchionna93}
1310 mmeineke 1087 \begin{equation}
1311     H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
1312     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1313 mmeineke 1114 \right).
1314 mmeineke 1087 \end{equation}
1315 mmeineke 1089 Poor choices of $h$ or $\tau_T$ can result in non-conservation
1316 mmeineke 1087 of $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
1317     last column of the {\tt .stat} file to allow checks on the quality of
1318     the integration.
1319    
1320     Bond constraints are applied at the end of both the {\tt moveA} and
1321     {\tt moveB} portions of the algorithm. Details on the constraint
1322     algorithms are given in section \ref{oopseSec:rattle}.
1323    
1324 mmeineke 1089 \subsection{\label{sec:NPTi}Constant-pressure integration with
1325 mmeineke 1087 isotropic box deformations (NPTi)}
1326    
1327     To carry out isobaric-isothermal ensemble calculations {\sc oopse}
1328     implements the Melchionna modifications to the Nos\'e-Hoover-Andersen
1329     equations of motion,\cite{melchionna93}
1330    
1331     \begin{eqnarray}
1332 mmeineke 1114 \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
1333     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
1334 mmeineke 1087 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1335 mmeineke 1114 \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
1336 mmeineke 1087 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1337     \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1338 mmeineke 1114 V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
1339 mmeineke 1087 \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1340 mmeineke 1114 \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1341 mmeineke 1087 \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V \left( P -
1342 mmeineke 1114 P_{\mathrm{target}} \right), \\
1343     \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta .
1344 mmeineke 1087 \label{eq:melchionna1}
1345     \end{eqnarray}
1346    
1347     $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the extended
1348     system. $\chi$ is a thermostat, and it has the same function as it
1349     does in the Nos\'e-Hoover NVT integrator. $\eta$ is a barostat which
1350     controls changes to the volume of the simulation box. ${\bf R}_0$ is
1351     the location of the center of mass for the entire system, and
1352     $\mathcal{V}$ is the volume of the simulation box. At any time, the
1353     volume can be calculated from the determinant of the matrix which
1354     describes the box shape:
1355     \begin{equation}
1356 mmeineke 1114 \mathcal{V} = \det(\mathsf{H}).
1357 mmeineke 1087 \end{equation}
1358    
1359     The NPTi integrator requires an instantaneous pressure. This quantity
1360     is calculated via the pressure tensor,
1361     \begin{equation}
1362     \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
1363     \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
1364 mmeineke 1114 \overleftrightarrow{\mathsf{W}}(t).
1365 mmeineke 1087 \end{equation}
1366     The kinetic contribution to the pressure tensor utilizes the {\it
1367     outer} product of the velocities denoted by the $\otimes$ symbol. The
1368     stress tensor is calculated from another outer product of the
1369     inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
1370     r}_i$) with the forces between the same two atoms,
1371     \begin{equation}
1372     \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf r}_{ij}(t)
1373 mmeineke 1114 \otimes {\bf f}_{ij}(t).
1374 mmeineke 1087 \end{equation}
1375     The instantaneous pressure is then simply obtained from the trace of
1376     the Pressure tensor,
1377     \begin{equation}
1378 mmeineke 1114 P(t) = \frac{1}{3} \mathrm{Tr} \left( \overleftrightarrow{\mathsf{P}}(t).
1379 mmeineke 1087 \right)
1380     \end{equation}
1381    
1382     In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
1383     relaxation of the pressure to the target value. To set values for
1384     $\tau_B$ or $P_{\mathrm{target}}$ in a simulation, one would use the
1385     {\tt tauBarostat} and {\tt targetPressure} keywords in the {\tt .bass}
1386     file. The units for {\tt tauBarostat} are fs, and the units for the
1387     {\tt targetPressure} are atmospheres. Like in the NVT integrator, the
1388     integration of the equations of motion is carried out in a
1389     velocity-Verlet style 2 part algorithm:
1390    
1391     {\tt moveA:}
1392 mmeineke 1089 \begin{align*}
1393 mmeineke 1114 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1394 mmeineke 1089 %
1395 mmeineke 1114 P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
1396 mmeineke 1089 %
1397     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
1398     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1399 mmeineke 1114 \left(\chi(t) + \eta(t) \right) \right), \\
1400 mmeineke 1089 %
1401     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
1402     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1403 mmeineke 1114 \chi(t) \right), \\
1404 mmeineke 1089 %
1405     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1406     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1407 mmeineke 1114 \right) ,\\
1408 mmeineke 1089 %
1409     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1410     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
1411 mmeineke 1114 \right) ,\\
1412 mmeineke 1089 %
1413     \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
1414     \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
1415 mmeineke 1114 - P_{\mathrm{target}} \right), \\
1416 mmeineke 1089 %
1417     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
1418     \left\{ {\bf v}\left(t + h / 2 \right)
1419     + \eta(t + h / 2)\left[ {\bf r}(t + h)
1420 mmeineke 1114 - {\bf R}_0 \right] \right\} ,\\
1421 mmeineke 1089 %
1422     \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
1423 mmeineke 1114 \mathsf{H}(t).
1424 mmeineke 1089 \end{align*}
1425 mmeineke 1087
1426     Most of these equations are identical to their counterparts in the NVT
1427 mmeineke 1089 integrator, but the propagation of positions to time $t + h$
1428 mmeineke 1087 depends on the positions at the same time. {\sc oopse} carries out
1429     this step iteratively (with a limit of 5 passes through the iterative
1430     loop). Also, the simulation box $\mathsf{H}$ is scaled uniformly for
1431     one full time step by an exponential factor that depends on the value
1432     of $\eta$ at time $t +
1433 mmeineke 1089 h / 2$. Reshaping the box uniformly also scales the volume of
1434 mmeineke 1087 the box by
1435     \begin{equation}
1436 mmeineke 1114 \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
1437 mmeineke 1087 \mathcal{V}(t)
1438     \end{equation}
1439    
1440     The {\tt doForces} step for the NPTi integrator is exactly the same as
1441     in both the DLM and NVT integrators. Once the forces and torques have
1442     been obtained at the new time step, the velocities can be advanced to
1443     the same time value.
1444    
1445     {\tt moveB:}
1446 mmeineke 1089 \begin{align*}
1447     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1448 mmeineke 1114 \left\{{\bf j}(t + h)\right\} ,\\
1449 mmeineke 1089 %
1450     P(t + h) &\leftarrow \left\{{\bf r}(t + h)\right\},
1451 mmeineke 1114 \left\{{\bf v}(t + h)\right\}, \\
1452 mmeineke 1089 %
1453     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1454     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
1455 mmeineke 1114 {T_{\mathrm{target}}} - 1 \right), \\
1456 mmeineke 1089 %
1457     \eta(t + h) &\leftarrow \eta(t + h / 2) +
1458     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
1459 mmeineke 1114 \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
1460 mmeineke 1089 %
1461     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
1462     + h / 2 \right) + \frac{h}{2} \left(
1463     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
1464 mmeineke 1114 (\chi(t + h) + \eta(t + h)) \right) ,\\
1465 mmeineke 1089 %
1466     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
1467     + h / 2 \right) + \frac{h}{2} \left( {\bf
1468     \tau}^b(t + h) - {\bf j}(t + h)
1469 mmeineke 1114 \chi(t + h) \right) .
1470 mmeineke 1089 \end{align*}
1471 mmeineke 1087
1472 mmeineke 1089 Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
1473     to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
1474     h)$, they indirectly depend on their own values at time $t + h$. {\tt
1475     moveB} is therefore done in an iterative fashion until $\chi(t + h)$
1476     and $\eta(t + h)$ become self-consistent. The relative tolerance for
1477     the self-consistency check defaults to a value of $\mbox{10}^{-6}$,
1478     but {\sc oopse} will terminate the iteration after 4 loops even if the
1479 mmeineke 1087 consistency check has not been satisfied.
1480    
1481     The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm is
1482     known to conserve a Hamiltonian for the extended system that is, to
1483     within a constant, identical to the Gibbs free energy,
1484     \begin{equation}
1485     H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
1486     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1487     \right) + P_{\mathrm{target}} \mathcal{V}(t).
1488     \end{equation}
1489     Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
1490     non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity is
1491     maintained in the last column of the {\tt .stat} file to allow checks
1492     on the quality of the integration. It is also known that this
1493     algorithm samples the equilibrium distribution for the enthalpy
1494     (including contributions for the thermostat and barostat),
1495     \begin{equation}
1496     H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2} \left(
1497     \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) + P_{\mathrm{target}}
1498     \mathcal{V}(t).
1499     \end{equation}
1500    
1501     Bond constraints are applied at the end of both the {\tt moveA} and
1502     {\tt moveB} portions of the algorithm. Details on the constraint
1503     algorithms are given in section \ref{oopseSec:rattle}.
1504    
1505 mmeineke 1089 \subsection{\label{sec:NPTf}Constant-pressure integration with a
1506 mmeineke 1087 flexible box (NPTf)}
1507    
1508     There is a relatively simple generalization of the
1509     Nos\'e-Hoover-Andersen method to include changes in the simulation box
1510     {\it shape} as well as in the volume of the box. This method utilizes
1511     the full $3 \times 3$ pressure tensor and introduces a tensor of
1512     extended variables ($\overleftrightarrow{\eta}$) to control changes to
1513     the box shape. The equations of motion for this method are
1514     \begin{eqnarray}
1515 mmeineke 1114 \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
1516 mmeineke 1087 \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
1517 mmeineke 1114 \chi \cdot \mathsf{1}) {\bf v}, \\
1518 mmeineke 1087 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1519 mmeineke 1114 \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
1520 mmeineke 1087 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1521     \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1522 mmeineke 1114 V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
1523 mmeineke 1087 \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1524 mmeineke 1114 \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1525 mmeineke 1089 \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
1526 mmeineke 1114 T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
1527     \dot{\mathsf{H}} & = & \overleftrightarrow{\eta} \cdot \mathsf{H} .
1528 mmeineke 1087 \label{eq:melchionna2}
1529     \end{eqnarray}
1530    
1531     Here, $\mathsf{1}$ is the unit matrix and $\overleftrightarrow{\mathsf{P}}$
1532     is the pressure tensor. Again, the volume, $\mathcal{V} = \det
1533     \mathsf{H}$.
1534    
1535     The propagation of the equations of motion is nearly identical to the
1536     NPTi integration:
1537    
1538     {\tt moveA:}
1539 mmeineke 1089 \begin{align*}
1540 mmeineke 1114 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1541 mmeineke 1089 %
1542     \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf r}(t)\right\},
1543 mmeineke 1114 \left\{{\bf v}(t)\right\} ,\\
1544 mmeineke 1089 %
1545     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
1546     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
1547     \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
1548 mmeineke 1114 {\bf v}(t) \right), \\
1549 mmeineke 1089 %
1550     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
1551     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1552 mmeineke 1114 \chi(t) \right), \\
1553 mmeineke 1089 %
1554     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1555     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1556 mmeineke 1114 \right), \\
1557 mmeineke 1089 %
1558     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1559     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
1560 mmeineke 1114 - 1 \right), \\
1561 mmeineke 1089 %
1562     \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
1563     \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
1564     T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
1565 mmeineke 1114 - P_{\mathrm{target}}\mathsf{1} \right), \\
1566 mmeineke 1089 %
1567     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
1568     \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
1569     h / 2) \cdot \left[ {\bf r}(t + h)
1570 mmeineke 1114 - {\bf R}_0 \right] \right\}, \\
1571 mmeineke 1089 %
1572     \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
1573 mmeineke 1114 \overleftrightarrow{\eta}(t + h / 2)} .
1574 mmeineke 1089 \end{align*}
1575 mmeineke 1087 {\sc oopse} uses a power series expansion truncated at second order
1576     for the exponential operation which scales the simulation box.
1577    
1578     The {\tt moveB} portion of the algorithm is largely unchanged from the
1579     NPTi integrator:
1580    
1581     {\tt moveB:}
1582 mmeineke 1089 \begin{align*}
1583     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1584 mmeineke 1114 \left\{{\bf j}(t + h)\right\}, \\
1585 mmeineke 1089 %
1586     \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
1587     (t + h)\right\}, \left\{{\bf v}(t
1588 mmeineke 1114 + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
1589 mmeineke 1089 %
1590     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1591     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
1592 mmeineke 1114 h)}{T_{\mathrm{target}}} - 1 \right), \\
1593 mmeineke 1089 %
1594     \overleftrightarrow{\eta}(t + h) &\leftarrow
1595     \overleftrightarrow{\eta}(t + h / 2) +
1596     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
1597     \tau_B^2} \left( \overleftrightarrow{P}(t + h)
1598 mmeineke 1114 - P_{\mathrm{target}}\mathsf{1} \right) ,\\
1599 mmeineke 1089 %
1600     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
1601     + h / 2 \right) + \frac{h}{2} \left(
1602     \frac{{\bf f}(t + h)}{m} -
1603     (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
1604 mmeineke 1114 + h)) \right) \cdot {\bf v}(t + h), \\
1605 mmeineke 1089 %
1606     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
1607     + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
1608 mmeineke 1114 + h) - {\bf j}(t + h) \chi(t + h) \right) .
1609 mmeineke 1089 \end{align*}
1610 mmeineke 1087
1611     The iterative schemes for both {\tt moveA} and {\tt moveB} are
1612     identical to those described for the NPTi integrator.
1613    
1614     The NPTf integrator is known to conserve the following Hamiltonian:
1615     \begin{equation}
1616     H_{\mathrm{NPTf}} = V + K + f k_B T_{\mathrm{target}} \left(
1617     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1618     \right) + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
1619     T_{\mathrm{target}}}{2}
1620     \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
1621     \end{equation}
1622    
1623     This integrator must be used with care, particularly in liquid
1624     simulations. Liquids have very small restoring forces in the
1625     off-diagonal directions, and the simulation box can very quickly form
1626     elongated and sheared geometries which become smaller than the
1627 mmeineke 1089 electrostatic or Lennard-Jones cutoff radii. The NPTf integrator
1628     finds most use in simulating crystals or liquid crystals which assume
1629     non-orthorhombic geometries.
1630 mmeineke 1087
1631 mmeineke 1089 \subsection{\label{nptxyz}Constant pressure in 3 axes (NPTxyz)}
1632 mmeineke 1087
1633     There is one additional extended system integrator which is somewhat
1634     simpler than the NPTf method described above. In this case, the three
1635     axes have independent barostats which each attempt to preserve the
1636     target pressure along the box walls perpendicular to that particular
1637     axis. The lengths of the box axes are allowed to fluctuate
1638     independently, but the angle between the box axes does not change.
1639     The equations of motion are identical to those described above, but
1640     only the {\it diagonal} elements of $\overleftrightarrow{\eta}$ are
1641     computed. The off-diagonal elements are set to zero (even when the
1642     pressure tensor has non-zero off-diagonal elements).
1643    
1644     It should be noted that the NPTxyz integrator is {\it not} known to
1645     preserve any Hamiltonian of interest to the chemical physics
1646     community. The integrator is extremely useful, however, in generating
1647     initial conditions for other integration methods. It {\it is} suitable
1648     for use with liquid simulations, or in cases where there is
1649     orientational anisotropy in the system (i.e. in lipid bilayer
1650     simulations).
1651    
1652 mmeineke 1071 \subsection{\label{oopseSec:rattle}The {\sc rattle} Method for Bond
1653     Constraints}
1654 mmeineke 1044
1655 mmeineke 1071 In order to satisfy the constraints of fixed bond lengths within {\sc
1656     oopse}, we have implemented the {\sc rattle} algorithm of
1657     Andersen.\cite{andersen83} The algorithm is a velocity verlet
1658     formulation of the {\sc shake} method\cite{ryckaert77} of iteratively
1659 mmeineke 1112 solving the Lagrange multipliers of constraint. The system of Lagrange
1660 mmeineke 1071 multipliers allows one to reformulate the equations of motion with
1661 mmeineke 1083 explicit constraint forces.\cite{fowles99:lagrange}
1662 mmeineke 1071
1663 mmeineke 1083 Consider a system described by coordinates $q_1$ and $q_2$ subject to an
1664 mmeineke 1071 equation of constraint:
1665     \begin{equation}
1666     \sigma(q_1, q_2,t) = 0
1667     \label{oopseEq:lm1}
1668     \end{equation}
1669     The Lagrange formulation of the equations of motion can be written:
1670     \begin{equation}
1671     \delta\int_{t_1}^{t_2}L\, dt =
1672     \int_{t_1}^{t_2} \sum_i \biggl [ \frac{\partial L}{\partial q_i}
1673     - \frac{d}{dt}\biggl(\frac{\partial L}{\partial \dot{q}_i}
1674 mmeineke 1114 \biggr ) \biggr] \delta q_i \, dt = 0.
1675 mmeineke 1071 \label{oopseEq:lm2}
1676     \end{equation}
1677     Here, $\delta q_i$ is not independent for each $q$, as $q_1$ and $q_2$
1678     are linked by $\sigma$. However, $\sigma$ is fixed at any given
1679     instant of time, giving:
1680     \begin{align}
1681     \delta\sigma &= \biggl( \frac{\partial\sigma}{\partial q_1} \delta q_1 %
1682 mmeineke 1114 + \frac{\partial\sigma}{\partial q_2} \delta q_2 \biggr) = 0 ,\\
1683 mmeineke 1071 %
1684     \frac{\partial\sigma}{\partial q_1} \delta q_1 &= %
1685 mmeineke 1114 - \frac{\partial\sigma}{\partial q_2} \delta q_2, \\
1686 mmeineke 1071 %
1687     \delta q_2 &= - \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1688 mmeineke 1114 \frac{\partial\sigma}{\partial q_2} \biggr) \delta q_1.
1689 mmeineke 1071 \end{align}
1690     Substituted back into Eq.~\ref{oopseEq:lm2},
1691     \begin{equation}
1692     \int_{t_1}^{t_2}\biggl [ \biggl(\frac{\partial L}{\partial q_1}
1693     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1694     \biggr)
1695     - \biggl( \frac{\partial L}{\partial q_1}
1696     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1697     \biggr) \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1698 mmeineke 1114 \frac{\partial\sigma}{\partial q_2} \biggr)\biggr] \delta q_1 \, dt = 0.
1699 mmeineke 1071 \label{oopseEq:lm3}
1700     \end{equation}
1701     Leading to,
1702     \begin{equation}
1703     \frac{\biggl(\frac{\partial L}{\partial q_1}
1704     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1705     \biggr)}{\frac{\partial\sigma}{\partial q_1}} =
1706     \frac{\biggl(\frac{\partial L}{\partial q_2}
1707     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_2}
1708 mmeineke 1114 \biggr)}{\frac{\partial\sigma}{\partial q_2}}.
1709 mmeineke 1071 \label{oopseEq:lm4}
1710     \end{equation}
1711     This relation can only be statisfied, if both are equal to a single
1712     function $-\lambda(t)$,
1713     \begin{align}
1714     \frac{\biggl(\frac{\partial L}{\partial q_1}
1715     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1716 mmeineke 1114 \biggr)}{\frac{\partial\sigma}{\partial q_1}} &= -\lambda(t), \\
1717 mmeineke 1071 %
1718     \frac{\partial L}{\partial q_1}
1719     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1} &=
1720 mmeineke 1114 -\lambda(t)\,\frac{\partial\sigma}{\partial q_1} ,\\
1721 mmeineke 1071 %
1722     \frac{\partial L}{\partial q_1}
1723     - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1724 mmeineke 1114 + \mathcal{G}_i &= 0,
1725 mmeineke 1071 \end{align}
1726 mmeineke 1114 where $\mathcal{G}_i$, the force of constraint on $i$, is:
1727 mmeineke 1071 \begin{equation}
1728 mmeineke 1114 \mathcal{G}_i = \lambda(t)\,\frac{\partial\sigma}{\partial q_1}.
1729 mmeineke 1071 \label{oopseEq:lm5}
1730     \end{equation}
1731    
1732     In a simulation, this would involve the solution of a set of $(m + n)$
1733     number of equations. Where $m$ is the number of constraints, and $n$
1734     is the number of constrained coordinates. In practice, this is not
1735 mmeineke 1083 done, as the matrix inversion necessary to solve the system of
1736 mmeineke 1071 equations would be very time consuming to solve. Additionally, the
1737     numerical error in the solution of the set of $\lambda$'s would be
1738     compounded by the error inherent in propagating by the Velocity Verlet
1739 mmeineke 1083 algorithm ($\Delta t^4$). The Verlet propagation error is negligible
1740     in an unconstrained system, as one is interested in the statistics of
1741 mmeineke 1071 the run, and not that the run be numerically exact to the ``true''
1742     integration. This relates back to the ergodic hypothesis that a time
1743 mmeineke 1083 integral of a valid trajectory will still give the correct ensemble
1744 mmeineke 1071 average. However, in the case of constraints, if the equations of
1745     motion leave the ``true'' trajectory, they are departing from the
1746     constrained surface. The method that is used, is to iteratively solve
1747     for $\lambda(t)$ at each time step.
1748    
1749     In {\sc rattle} the equations of motion are modified subject to the
1750     following two constraints:
1751     \begin{align}
1752     \sigma_{ij}[\mathbf{r}(t)] \equiv
1753     [ \mathbf{r}_i(t) - \mathbf{r}_j(t)]^2 - d_{ij}^2 &= 0 %
1754 mmeineke 1114 \label{oopseEq:c1}, \\
1755 mmeineke 1071 %
1756     [\mathbf{\dot{r}}_i(t) - \mathbf{\dot{r}}_j(t)] \cdot
1757 mmeineke 1114 [\mathbf{r}_i(t) - \mathbf{r}_j(t)] &= 0 .\label{oopseEq:c2}
1758 mmeineke 1071 \end{align}
1759     Eq.~\ref{oopseEq:c1} is the set of bond constraints, where $d_{ij}$ is
1760     the constrained distance between atom $i$ and
1761     $j$. Eq.~\ref{oopseEq:c2} constrains the velocities of $i$ and $j$ to
1762 mmeineke 1083 be perpendicular to the bond vector, so that the bond can neither grow
1763 mmeineke 1071 nor shrink. The constrained dynamics equations become:
1764     \begin{equation}
1765 mmeineke 1114 m_i \mathbf{\ddot{r}}_i = \mathbf{F}_i + \mathbf{\mathcal{G}}_i,
1766 mmeineke 1071 \label{oopseEq:r1}
1767     \end{equation}
1768 mmeineke 1114 where,$\mathbf{\mathcal{G}}_i$ are the forces of constraint on $i$,
1769 mmeineke 1083 and are defined:
1770 mmeineke 1071 \begin{equation}
1771 mmeineke 1114 \mathbf{\mathcal{G}}_i = - \sum_j \lambda_{ij}(t)\,\nabla \sigma_{ij}.
1772 mmeineke 1071 \label{oopseEq:r2}
1773     \end{equation}
1774    
1775     In Velocity Verlet, if $\Delta t = h$, the propagation can be written:
1776     \begin{align}
1777     \mathbf{r}_i(t+h) &=
1778     \mathbf{r}_i(t) + h\mathbf{\dot{r}}(t) +
1779     \frac{h^2}{2m_i}\,\Bigl[ \mathbf{F}_i(t) +
1780 mmeineke 1114 \mathbf{\mathcal{G}}_{Ri}(t) \Bigr] \label{oopseEq:vv1}, \\
1781 mmeineke 1071 %
1782     \mathbf{\dot{r}}_i(t+h) &=
1783     \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i}
1784     \Bigl[ \mathbf{F}_i(t) + \mathbf{\mathcal{G}}_{Ri}(t) +
1785 mmeineke 1114 \mathbf{F}_i(t+h) + \mathbf{\mathcal{G}}_{Vi}(t+h) \Bigr] ,%
1786 mmeineke 1071 \label{oopseEq:vv2}
1787     \end{align}
1788 mmeineke 1114 where:
1789 mmeineke 1083 \begin{align}
1790     \mathbf{\mathcal{G}}_{Ri}(t) &=
1791 mmeineke 1114 -2 \sum_j \lambda_{Rij}(t) \mathbf{r}_{ij}(t) ,\\
1792 mmeineke 1083 %
1793     \mathbf{\mathcal{G}}_{Vi}(t+h) &=
1794 mmeineke 1114 -2 \sum_j \lambda_{Vij}(t+h) \mathbf{r}(t+h).
1795 mmeineke 1083 \end{align}
1796     Next, define:
1797     \begin{align}
1798 mmeineke 1114 g_{ij} &= h \lambda_{Rij}(t) ,\\
1799     k_{ij} &= h \lambda_{Vij}(t+h), \\
1800 mmeineke 1083 \mathbf{q}_i &= \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i} \mathbf{F}_i(t)
1801 mmeineke 1114 - \frac{1}{m_i}\sum_j g_{ij}\mathbf{r}_{ij}(t).
1802 mmeineke 1083 \end{align}
1803     Using these definitions, Eq.~\ref{oopseEq:vv1} and \ref{oopseEq:vv2}
1804     can be rewritten as,
1805     \begin{align}
1806 mmeineke 1114 \mathbf{r}_i(t+h) &= \mathbf{r}_i(t) + h \mathbf{q}_i ,\\
1807 mmeineke 1083 %
1808     \mathbf{\dot{r}}(t+h) &= \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1809 mmeineke 1114 -\frac{1}{m_i}\sum_j k_{ij} \mathbf{r}_{ij}(t+h).
1810 mmeineke 1083 \end{align}
1811 mmeineke 1071
1812 mmeineke 1083 To integrate the equations of motion, the {\sc rattle} algorithm first
1813     solves for $\mathbf{r}(t+h)$. Let,
1814     \begin{equation}
1815 mmeineke 1114 \mathbf{q}_i = \mathbf{\dot{r}}(t) + \frac{h}{2m_i}\mathbf{F}_i(t).
1816 mmeineke 1083 \end{equation}
1817     Here $\mathbf{q}_i$ corresponds to an initial unconstrained move. Next
1818     pick a constraint $j$, and let,
1819     \begin{equation}
1820     \mathbf{s} = \mathbf{r}_i(t) + h\mathbf{q}_i(t)
1821 mmeineke 1114 - \mathbf{r}_j(t) + h\mathbf{q}_j(t).
1822 mmeineke 1083 \label{oopseEq:ra1}
1823     \end{equation}
1824     If
1825     \begin{equation}
1826     \Big| |\mathbf{s}|^2 - d_{ij}^2 \Big| > \text{tolerance},
1827     \end{equation}
1828     then the constraint is unsatisfied, and corrections are made to the
1829     positions. First we define a test corrected configuration as,
1830     \begin{align}
1831     \mathbf{r}_i^T(t+h) = \mathbf{r}_i(t) + h\biggl[\mathbf{q}_i -
1832 mmeineke 1114 g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_i} \biggr] ,\\
1833 mmeineke 1083 %
1834     \mathbf{r}_j^T(t+h) = \mathbf{r}_j(t) + h\biggl[\mathbf{q}_j +
1835 mmeineke 1114 g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_j} \biggr].
1836 mmeineke 1083 \end{align}
1837     And we chose $g_{ij}$ such that, $|\mathbf{r}_i^T - \mathbf{r}_j^T|^2
1838     = d_{ij}^2$. Solving the quadratic for $g_{ij}$ we obtain the
1839     approximation,
1840     \begin{equation}
1841     g_{ij} = \frac{(s^2 - d^2)}{2h[\mathbf{s}\cdot\mathbf{r}_{ij}(t)]
1842 mmeineke 1114 (\frac{1}{m_i} + \frac{1}{m_j})}.
1843 mmeineke 1083 \end{equation}
1844     Although not an exact solution for $g_{ij}$, as this is an iterative
1845     scheme overall, the eventual solution will converge. With a trial
1846     $g_{ij}$, the new $\mathbf{q}$'s become,
1847     \begin{align}
1848     \mathbf{q}_i &= \mathbf{q}^{\text{old}}_i - g_{ij}\,
1849 mmeineke 1114 \frac{\mathbf{r}_{ij}(t)}{m_i} ,\\
1850 mmeineke 1083 %
1851     \mathbf{q}_j &= \mathbf{q}^{\text{old}}_j + g_{ij}\,
1852 mmeineke 1114 \frac{\mathbf{r}_{ij}(t)}{m_j} .
1853 mmeineke 1083 \end{align}
1854     The whole algorithm is then repeated from Eq.~\ref{oopseEq:ra1} until
1855     all constraints are satisfied.
1856 mmeineke 1071
1857 mmeineke 1083 The second step of {\sc rattle}, is to then update the velocities. The
1858     step starts with,
1859     \begin{equation}
1860 mmeineke 1114 \mathbf{\dot{r}}_i(t+h) = \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h).
1861 mmeineke 1083 \end{equation}
1862     Next we pick a constraint $j$, and calculate the dot product $\ell$.
1863     \begin{equation}
1864 mmeineke 1114 \ell = \mathbf{r}_{ij}(t+h) \cdot \mathbf{\dot{r}}_{ij}(t+h).
1865 mmeineke 1083 \label{oopseEq:rv1}
1866     \end{equation}
1867     Here if constraint Eq.~\ref{oopseEq:c2} holds, $\ell$ should be
1868     zero. Therefore if $\ell$ is greater than some tolerance, then
1869     corrections are made to the $i$ and $j$ velocities.
1870     \begin{align}
1871     \mathbf{\dot{r}}_i^T &= \mathbf{\dot{r}}_i(t+h) - k_{ij}
1872 mmeineke 1114 \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_i}, \\
1873 mmeineke 1083 %
1874     \mathbf{\dot{r}}_j^T &= \mathbf{\dot{r}}_j(t+h) + k_{ij}
1875 mmeineke 1114 \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_j}.
1876 mmeineke 1083 \end{align}
1877     Like in the previous step, we select a value for $k_{ij}$ such that
1878     $\ell$ is zero.
1879     \begin{equation}
1880 mmeineke 1114 k_{ij} = \frac{\ell}{d^2_{ij}(\frac{1}{m_i} + \frac{1}{m_j})}.
1881 mmeineke 1083 \end{equation}
1882     The test velocities, $\mathbf{\dot{r}}^T_i$ and
1883     $\mathbf{\dot{r}}^T_j$, then replace their respective velocities, and
1884     the algorithm is iterated from Eq.~\ref{oopseEq:rv1} until all
1885     constraints are satisfied.
1886 mmeineke 1071
1887 mmeineke 1083
1888 mmeineke 1054 \subsection{\label{oopseSec:zcons}Z-Constraint Method}
1889 mmeineke 1044
1890 mmeineke 1083 Based on the fluctuation-dissipation theorem, a force auto-correlation
1891     method was developed by Roux and Karplus to investigate the dynamics
1892     of ions inside ion channels.\cite{Roux91} The time-dependent friction
1893     coefficient can be calculated from the deviation of the instantaneous
1894     force from its mean force.
1895 mmeineke 1044 \begin{equation}
1896 mmeineke 1114 \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
1897 mmeineke 1044 \end{equation}
1898     where%
1899     \begin{equation}
1900 mmeineke 1114 \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
1901 mmeineke 1044 \end{equation}
1902    
1903    
1904 mmeineke 1083 If the time-dependent friction decays rapidly, the static friction
1905     coefficient can be approximated by
1906 mmeineke 1044 \begin{equation}
1907 mmeineke 1114 \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt.
1908 mmeineke 1044 \end{equation}
1909 mmeineke 1087 Allowing diffusion constant to then be calculated through the
1910     Einstein relation:\cite{Marrink94}
1911 mmeineke 1044 \begin{equation}
1912 mmeineke 1087 D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
1913 mmeineke 1114 }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
1914 mmeineke 1044 \end{equation}
1915    
1916 mmeineke 1083 The Z-Constraint method, which fixes the z coordinates of the
1917     molecules with respect to the center of the mass of the system, has
1918     been a method suggested to obtain the forces required for the force
1919     auto-correlation calculation.\cite{Marrink94} However, simply resetting the
1920     coordinate will move the center of the mass of the whole system. To
1921     avoid this problem, a new method was used in {\sc oopse}. Instead of
1922 mmeineke 1087 resetting the coordinate, we reset the forces of z-constrained
1923 mmeineke 1083 molecules as well as subtract the total constraint forces from the
1924 mmeineke 1087 rest of the system after the force calculation at each time step.
1925 mmeineke 1044
1926 mmeineke 1087 After the force calculation, define $G_\alpha$ as
1927     \begin{equation}
1928 mmeineke 1114 G_{\alpha} = \sum_i F_{\alpha i},
1929 mmeineke 1087 \label{oopseEq:zc1}
1930     \end{equation}
1931 mmeineke 1114 where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
1932 mmeineke 1087 z-constrained molecule $\alpha$. The forces of the z constrained
1933     molecule are then set to:
1934     \begin{equation}
1935     F_{\alpha i} = F_{\alpha i} -
1936 mmeineke 1114 \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
1937 mmeineke 1087 \end{equation}
1938     Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
1939     molecule. Having rescaled the forces, the velocities must also be
1940     rescaled to subtract out any center of mass velocity in the z
1941     direction.
1942     \begin{equation}
1943     v_{\alpha i} = v_{\alpha i} -
1944 mmeineke 1114 \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
1945 mmeineke 1087 \end{equation}
1946 mmeineke 1114 where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
1947 mmeineke 1087 Lastly, all of the accumulated z constrained forces must be subtracted
1948     from the system to keep the system center of mass from drifting.
1949     \begin{equation}
1950     F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha} G_{\alpha}}
1951 mmeineke 1114 {\sum_{\beta}\sum_i m_{\beta i}},
1952 mmeineke 1087 \end{equation}
1953 mmeineke 1114 where $\beta$ are all of the unconstrained molecules in the
1954 mmeineke 1089 system. Similarly, the velocities of the unconstrained molecules must
1955     also be scaled.
1956     \begin{equation}
1957     v_{\beta i} = v_{\beta i} + \sum_{\alpha}
1958 mmeineke 1114 \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
1959 mmeineke 1089 \end{equation}
1960 mmeineke 1087
1961 mmeineke 1083 At the very beginning of the simulation, the molecules may not be at their
1962     constrained positions. To move a z-constrained molecule to its specified
1963     position, a simple harmonic potential is used
1964 mmeineke 1044 \begin{equation}
1965 mmeineke 1114 U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
1966 mmeineke 1044 \end{equation}
1967 mmeineke 1083 where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$ is the
1968     current $z$ coordinate of the center of mass of the constrained molecule, and
1969     $z_{\text{cons}}$ is the constrained position. The harmonic force operating
1970     on the z-constrained molecule at time $t$ can be calculated by
1971 mmeineke 1044 \begin{equation}
1972 mmeineke 1083 F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
1973 mmeineke 1114 -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
1974 mmeineke 1044 \end{equation}
1975    
1976 mmeineke 1051 \section{\label{oopseSec:props}Trajectory Analysis}
1977 mmeineke 1044
1978 mmeineke 1051 \subsection{\label{oopseSec:staticProps}Static Property Analysis}
1979 mmeineke 1044
1980     The static properties of the trajectories are analyzed with the
1981 mmeineke 1083 program \texttt{staticProps}. The code is capable of calculating a
1982     number of pair correlations between species A and B. Some of which
1983     only apply to directional entities. The summary of pair correlations
1984     can be found in Table~\ref{oopseTb:gofrs}
1985 mmeineke 1044
1986 mmeineke 1083 \begin{table}
1987 mmeineke 1089 \caption[The list of pair correlations in \texttt{staticProps}]{THE DIFFERENT PAIR CORRELATIONS IN \texttt{staticProps}}
1988 mmeineke 1083 \label{oopseTb:gofrs}
1989     \begin{center}
1990     \begin{tabular}{|l|c|c|}
1991     \hline
1992     Name & Equation & Directional Atom \\ \hline
1993     $g_{\text{AB}}(r)$ & Eq.~\ref{eq:gofr} & neither \\ \hline
1994     $g_{\text{AB}}(r, \cos \theta)$ & Eq.~\ref{eq:gofrCosTheta} & A \\ \hline
1995     $g_{\text{AB}}(r, \cos \omega)$ & Eq.~\ref{eq:gofrCosOmega} & both \\ \hline
1996     $g_{\text{AB}}(x, y, z)$ & Eq.~\ref{eq:gofrXYZ} & neither \\ \hline
1997     $\langle \cos \omega \rangle_{\text{AB}}(r)$ & Eq.~\ref{eq:cosOmegaOfR} &%
1998     both \\ \hline
1999     \end{tabular}
2000 mmeineke 1089 \begin{minipage}{\linewidth}
2001     \centering
2002     \vspace{2mm}
2003     The third column specifies which atom, if any, need be a directional entity.
2004     \end{minipage}
2005 mmeineke 1083 \end{center}
2006     \end{table}
2007    
2008 mmeineke 1044 The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
2009     \begin{equation}
2010     g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
2011     \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
2012 mmeineke 1114 \delta( r - |\mathbf{r}_{ij}|) \rangle, \label{eq:gofr}
2013 mmeineke 1044 \end{equation}
2014 mmeineke 1114 where $\mathbf{r}_{ij}$ is the vector
2015 mmeineke 1044 \begin{equation*}
2016 mmeineke 1114 \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i, \notag
2017 mmeineke 1044 \end{equation*}
2018     and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
2019     the expected pair density at a given $r$.
2020    
2021     The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
2022     $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
2023     dimensional histograms. Both use $r$ for the primary axis then a
2024     $\cos$ for the secondary axis ($\cos \theta$ for
2025     Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
2026     Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
2027     correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
2028     \theta)$ is defined as follows:
2029     \begin{equation}
2030     g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2031     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2032     \delta( \cos \theta - \cos \theta_{ij})
2033 mmeineke 1114 \delta( r - |\mathbf{r}_{ij}|) \rangle.
2034 mmeineke 1044 \label{eq:gofrCosTheta}
2035     \end{equation}
2036 mmeineke 1114 Here
2037 mmeineke 1044 \begin{equation*}
2038 mmeineke 1114 \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij},
2039 mmeineke 1044 \end{equation*}
2040 mmeineke 1114 where $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
2041 mmeineke 1044 and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
2042     $\mathbf{r}_{ij}$.
2043    
2044     The second two dimensional histogram is of the form:
2045     \begin{equation}
2046     g_{\text{AB}}(r, \cos \omega) =
2047     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2048     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2049     \delta( \cos \omega - \cos \omega_{ij})
2050 mmeineke 1114 \delta( r - |\mathbf{r}_{ij}|) \rangle. \label{eq:gofrCosOmega}
2051 mmeineke 1044 \end{equation}
2052     Here
2053     \begin{equation*}
2054 mmeineke 1114 \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}.
2055 mmeineke 1044 \end{equation*}
2056     Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
2057     directional vectors of species $i$ and $j$.
2058    
2059     The static analysis code is also cable of calculating a three
2060     dimensional pair correlation of the form:
2061     \begin{equation}\label{eq:gofrXYZ}
2062     g_{\text{AB}}(x, y, z) =
2063     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2064     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2065     \delta( x - x_{ij})
2066     \delta( y - y_{ij})
2067 mmeineke 1114 \delta( z - z_{ij}) \rangle,
2068 mmeineke 1044 \end{equation}
2069 mmeineke 1114 where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
2070 mmeineke 1044 components respectively of vector $\mathbf{r}_{ij}$.
2071    
2072     The final pair correlation is similar to
2073     Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
2074     \rangle_{\text{AB}}(r)$ is calculated in the following way:
2075     \begin{equation}\label{eq:cosOmegaOfR}
2076     \langle \cos \omega \rangle_{\text{AB}}(r) =
2077     \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2078 mmeineke 1114 (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle.
2079 mmeineke 1044 \end{equation}
2080     Here $\cos \omega_{ij}$ is defined in the same way as in
2081     Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
2082     correlation that gives the average correlation of two directional
2083     entities as a function of their distance from each other.
2084    
2085     \subsection{\label{dynamicProps}Dynamic Property Analysis}
2086    
2087     The dynamic properties of a trajectory are calculated with the program
2088 mmeineke 1083 \texttt{dynamicProps}. The program calculates the following properties:
2089 mmeineke 1044 \begin{gather}
2090 mmeineke 1114 \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle, \label{eq:rms}\\
2091     \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle, \label{eq:velCorr} \\
2092     \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle. \label{eq:angularVelCorr}
2093 mmeineke 1044 \end{gather}
2094    
2095 mmeineke 1083 Eq.~\ref{eq:rms} is the root mean square displacement function. Which
2096     allows one to observe the average displacement of an atom as a
2097     function of time. The quantity is useful when calculating diffusion
2098     coefficients because of the Einstein Relation, which is valid at long
2099     times.\cite{allen87:csl}
2100     \begin{equation}
2101 mmeineke 1114 2tD = \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle.
2102 mmeineke 1083 \label{oopseEq:einstein}
2103     \end{equation}
2104    
2105     Eq.~\ref{eq:velCorr} and \ref{eq:angularVelCorr} are the translational
2106 mmeineke 1044 velocity and angular velocity correlation functions respectively. The
2107 mmeineke 1083 latter is only applicable to directional species in the
2108     simulation. The velocity autocorrelation functions are useful when
2109     determining vibrational information about the system of interest.
2110 mmeineke 1044
2111 mmeineke 1051 \section{\label{oopseSec:design}Program Design}
2112 mmeineke 1044
2113 mmeineke 1054 \subsection{\label{sec:architecture} {\sc oopse} Architecture}
2114 mmeineke 1044
2115 mmeineke 1054 The core of OOPSE is divided into two main object libraries:
2116     \texttt{libBASS} and \texttt{libmdtools}. \texttt{libBASS} is the
2117     library developed around the parsing engine and \texttt{libmdtools}
2118     is the software library developed around the simulation engine. These
2119     two libraries are designed to encompass all the basic functions and
2120     tools that {\sc oopse} provides. Utility programs, such as the
2121     property analyzers, need only link against the software libraries to
2122     gain access to parsing, force evaluation, and input / output
2123     routines.
2124 mmeineke 1044
2125 mmeineke 1054 Contained in \texttt{libBASS} are all the routines associated with
2126     reading and parsing the \texttt{.bass} input files. Given a
2127     \texttt{.bass} file, \texttt{libBASS} will open it and any associated
2128     \texttt{.mdl} files; then create structures in memory that are
2129     templates of all the molecules specified in the input files. In
2130     addition, any simulation parameters set in the \texttt{.bass} file
2131     will be placed in a structure for later query by the controlling
2132     program.
2133 mmeineke 1044
2134 mmeineke 1054 Located in \texttt{libmdtools} are all other routines necessary to a
2135     Molecular Dynamics simulation. The library uses the main data
2136     structures returned by \texttt{libBASS} to initialize the various
2137     parts of the simulation: the atom structures and positions, the force
2138     field, the integrator, \emph{et cetera}. After initialization, the
2139     library can be used to perform a variety of tasks: integrate a
2140     Molecular Dynamics trajectory, query phase space information from a
2141     specific frame of a completed trajectory, or even recalculate force or
2142     energetic information about specific frames from a completed
2143     trajectory.
2144 mmeineke 1044
2145 mmeineke 1054 With these core libraries in place, several programs have been
2146     developed to utilize the routines provided by \texttt{libBASS} and
2147     \texttt{libmdtools}. The main program of the package is \texttt{oopse}
2148     and the corresponding parallel version \texttt{oopse\_MPI}. These two
2149 mmeineke 1083 programs will take the \texttt{.bass} file, and create (and integrate)
2150 mmeineke 1054 the simulation specified in the script. The two analysis programs
2151     \texttt{staticProps} and \texttt{dynamicProps} utilize the core
2152     libraries to initialize and read in trajectories from previously
2153     completed simulations, in addition to the ability to use functionality
2154     from \texttt{libmdtools} to recalculate forces and energies at key
2155     frames in the trajectories. Lastly, the family of system building
2156     programs (Sec.~\ref{oopseSec:initCoords}) also use the libraries to
2157     store and output the system configurations they create.
2158    
2159     \subsection{\label{oopseSec:parallelization} Parallelization of {\sc oopse}}
2160    
2161 mmeineke 1083 Although processor power is continually growing roughly following
2162     Moore's Law, it is still unreasonable to simulate systems of more then
2163     a 1000 atoms on a single processor. To facilitate study of larger
2164     system sizes or smaller systems on long time scales in a reasonable
2165     period of time, parallel methods were developed allowing multiple
2166     CPU's to share the simulation workload. Three general categories of
2167     parallel decomposition methods have been developed including atomic,
2168     spatial and force decomposition methods.
2169 mmeineke 1054
2170 mmeineke 1083 Algorithmically simplest of the three methods is atomic decomposition
2171 mmeineke 1044 where N particles in a simulation are split among P processors for the
2172     duration of the simulation. Computational cost scales as an optimal
2173 mmeineke 1089 $\mathcal{O}(N/P)$ for atomic decomposition. Unfortunately all
2174     processors must communicate positions and forces with all other
2175     processors at every force evaluation, leading communication costs to
2176     scale as an unfavorable $\mathcal{O}(N)$, \emph{independent of the
2177     number of processors}. This communication bottleneck led to the
2178     development of spatial and force decomposition methods in which
2179     communication among processors scales much more favorably. Spatial or
2180     domain decomposition divides the physical spatial domain into 3D boxes
2181     in which each processor is responsible for calculation of forces and
2182     positions of particles located in its box. Particles are reassigned to
2183     different processors as they move through simulation space. To
2184     calculate forces on a given particle, a processor must know the
2185     positions of particles within some cutoff radius located on nearby
2186     processors instead of the positions of particles on all
2187     processors. Both communication between processors and computation
2188     scale as $\mathcal{O}(N/P)$ in the spatial method. However, spatial
2189 mmeineke 1044 decomposition adds algorithmic complexity to the simulation code and
2190     is not very efficient for small N since the overall communication
2191 mmeineke 1089 scales as the surface to volume ratio $\mathcal{O}(N/P)^{2/3}$ in
2192     three dimensions.
2193 mmeineke 1044
2194 mmeineke 1083 The parallelization method used in {\sc oopse} is the force
2195     decomposition method. Force decomposition assigns particles to
2196     processors based on a block decomposition of the force
2197     matrix. Processors are split into an optimally square grid forming row
2198     and column processor groups. Forces are calculated on particles in a
2199     given row by particles located in that processors column
2200     assignment. Force decomposition is less complex to implement than the
2201 mmeineke 1089 spatial method but still scales computationally as $\mathcal{O}(N/P)$
2202     and scales as $\mathcal{O}(N/\sqrt{P})$ in communication
2203     cost. Plimpton has also found that force decompositions scale more
2204     favorably than spatial decompositions for systems up to 10,000 atoms
2205     and favorably compete with spatial methods up to 100,000
2206     atoms.\cite{plimpton95}
2207 mmeineke 1044
2208 mmeineke 1054 \subsection{\label{oopseSec:memAlloc}Memory Issues in Trajectory Analysis}
2209 mmeineke 1044
2210 mmeineke 1054 For large simulations, the trajectory files can sometimes reach sizes
2211     in excess of several gigabytes. In order to effectively analyze that
2212 mmeineke 1083 amount of data, two memory management schemes have been devised for
2213 mmeineke 1054 \texttt{staticProps} and for \texttt{dynamicProps}. The first scheme,
2214     developed for \texttt{staticProps}, is the simplest. As each frame's
2215     statistics are calculated independent of each other, memory is
2216     allocated for each frame, then freed once correlation calculations are
2217     complete for the snapshot. To prevent multiple passes through a
2218     potentially large file, \texttt{staticProps} is capable of calculating
2219     all requested correlations per frame with only a single pair loop in
2220 mmeineke 1083 each frame and a single read of the file.
2221 mmeineke 1044
2222 mmeineke 1054 The second, more advanced memory scheme, is used by
2223     \texttt{dynamicProps}. Here, the program must have multiple frames in
2224     memory to calculate time dependent correlations. In order to prevent a
2225     situation where the program runs out of memory due to large
2226     trajectories, the user is able to specify that the trajectory be read
2227     in blocks. The number of frames in each block is specified by the
2228     user, and upon reading a block of the trajectory,
2229     \texttt{dynamicProps} will calculate all of the time correlation frame
2230 mmeineke 1083 pairs within the block. After in-block correlations are complete, a
2231 mmeineke 1054 second block of the trajectory is read, and the cross correlations are
2232 mmeineke 1112 calculated between the two blocks. This second block is then freed and
2233 mmeineke 1054 then incremented and the process repeated until the end of the
2234     trajectory. Once the end is reached, the first block is freed then
2235     incremented, and the again the internal time correlations are
2236     calculated. The algorithm with the second block is then repeated with
2237     the new origin block, until all frame pairs have been correlated in
2238     time. This process is illustrated in
2239     Fig.~\ref{oopseFig:dynamicPropsMemory}.
2240 mmeineke 1044
2241 mmeineke 1054 \begin{figure}
2242     \centering
2243     \includegraphics[width=\linewidth]{dynamicPropsMem.eps}
2244     \caption[A representation of the block correlations in \texttt{dynamicProps}]{This diagram illustrates the memory management used by \texttt{dynamicProps}, which follows the scheme: $\sum^{N_{\text{memory blocks}}}_{i=1}[ \operatorname{self}(i) + \sum^{N_{\text{memory blocks}}}_{j>i} \operatorname{cross}(i,j)]$. The shaded region represents the self correlation of the memory block, and the open blocks are read one at a time and the cross correlations between blocks are calculated.}
2245     \label{oopseFig:dynamicPropsMemory}
2246     \end{figure}
2247 mmeineke 1044
2248 mmeineke 1054 \section{\label{oopseSec:conclusion}Conclusion}
2249 mmeineke 1044
2250 mmeineke 1054 We have presented the design and implementation of our open source
2251 mmeineke 1083 simulation package {\sc oopse}. The package offers novel capabilities
2252     to the field of Molecular Dynamics simulation packages in the form of
2253     dipolar force fields, and symplectic integration of rigid body
2254     dynamics. It is capable of scaling across multiple processors through
2255     the use of force based decomposition using MPI. It also implements
2256     several advanced integrators allowing the end user control over
2257     temperature and pressure. In addition, it is capable of integrating
2258     constrained dynamics through both the {\sc rattle} algorithm and the
2259     z-constraint method.
2260 mmeineke 1044
2261 mmeineke 1054 These features are all brought together in a single open-source
2262 mmeineke 1112 program. This allows researchers to not only benefit from
2263 mmeineke 1054 {\sc oopse}, but also contribute to {\sc oopse}'s development as
2264 mmeineke 1089 well.
2265 mmeineke 1044