ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
Revision: 553
Committed: Tue Jun 10 16:04:33 2003 UTC (21 years, 3 months ago) by mmeineke
Content type: application/x-tex
File size: 18792 byte(s)
Log Message:
mostly final version

File Contents

# User Rev Content
1 mmeineke 546 %% this is my poster for the Midwest Theoretical Conference
2    
3    
4     \documentclass[10pt]{scrartcl}
5     %%
6     %
7     % This is a poster template with latex macros and using
8     % the University of Florida Logo. For further information
9     % on making postscript, resizeing, and printing the poster file
10     % please see web site
11     % http://www.phys.ufl.edu/~pjh/posters/poster_howto_UF.html
12     %
13     % N.B. This format is cribbed from one obtained from the University
14     % of Karlsruhe, so some macro names and parameters are in German
15     % Here is a short glosary:
16     % Breite: width
17     % Hoehe: height
18     % Spalte: column
19     % Kasten: box
20     %
21     % All style files necessary are part of standard TeTeX distribution
22     % On the UF unix cluster you should not need to import these files
23     % specially, as they will be automatically located. If you
24     % run on a local PC however, you will need to locate these files.
25     % At UF try /usr/local/TeTeX...
26     %
27     % P. Hirschfeld 2/11/00
28     %
29     % The recommended procedure is to first generate a ``Special Format" size poster
30     % file, which is relatively easy to manipulate and view. It can be
31     % resized later to A0 (900 x 1100 mm) full poster size, or A4 or Letter size
32     % as desired (see web site). Note the large format printers currently
33     % in use at UF's OIR have max width of about 90cm or 3 ft., but the paper
34     % comes in rolls so the length is variable. See below the specifications
35     % for width and height of various formats. Default in the template is
36     % ``Special Format", with 4 columns.
37     %%
38     %%
39     %% Choose your poster size:
40     %% For printing you will later RESIZE your poster by a factor
41     %% 2*sqrt(2) = 2.828 (for A0)
42     %% 2 = 2.00 (for A1)
43     %%
44     %%
45 mmeineke 551 \def\breite{390mm} % Special Format.
46 mmeineke 546 \def\hoehe{319.2mm} % Scaled by 2.82 this gives 110cm x 90cm
47     \def\anzspalten{4}
48     %%
49     %%\def\breite{420mm} % A3 LANDSCAPE
50     %%\def\hoehe{297mm}
51     %%\def\anzspalten{4}
52     %%
53     %% \def\breite{297mm} % A3 PORTRAIT
54     %% \def\hoehe{420mm}
55     %% \def\anzspalten{3}
56     %%
57     %% \def\breite{210mm} % A4 PORTRAIT
58     %% \def\hoehe{297mm}
59     %% \def\anzspalten{2}
60     %%
61     %%
62     %% Procedure:
63     %% Generate poster.dvi with latex
64     %% Check with Ghostview
65     %% Make a .ps-file with ``dvips -o poster.ps poster''
66     %% Scale it with poster_resize poster.ps S
67     %% where S is scale factor
68     %% for Special Format->A0 S= 2.828 (= 2^(3/2)))
69     %% for Special Format->A1 S= 2 (= 2^(2/2)))
70     %%
71     %% Sizes (European:)
72     %% A3: 29.73 X 42.04 cm
73     %% A1: 59.5 X 84.1 cm
74     %% A0: 84.1 X 118.9 cm
75     %% N.B. The recommended procedure is ``Special Format x 2.82"
76     %% which gives 90cm x 110cm (not quite A0 dimensions).
77     %%
78     %% --------------------------------------------------------------------------
79     %%
80     %% Load the necessary packages
81     %%
82 mmeineke 549 \usepackage{palatino}
83 mmeineke 546 \usepackage[latin1]{inputenc}
84     \usepackage{epsf}
85     \usepackage{graphicx,psfrag,color,pstcol,pst-grad}
86     \usepackage{amsmath,amssymb}
87     \usepackage{latexsym}
88     \usepackage{calc}
89     \usepackage{multicol}
90 mmeineke 550 \usepackage{wrapfig}
91 mmeineke 546 %%
92     %% Define the required numbers, lengths and boxes
93     %%
94     \newsavebox{\dummybox}
95     \newsavebox{\spalten}
96     %\input psfig.sty
97    
98     %%
99     %%
100     \newlength{\bgwidth}\newlength{\bgheight}
101     \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
102     \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
103    
104     \newlength{\kastenwidth}
105    
106     %% Set paper format
107     \setlength\paperheight{\hoehe}
108     \setlength\paperwidth{\breite}
109     \special{papersize=\breite,\hoehe}
110    
111     \topmargin -1in
112     \marginparsep0mm
113     \marginparwidth0mm
114     \headheight0mm
115     \headsep0mm
116    
117    
118     %% Minimal Margins to Make Correct Bounding Box
119     \setlength{\oddsidemargin}{-2.44cm}
120     \addtolength{\topmargin}{-3mm}
121     \textwidth\paperwidth
122     \textheight\paperheight
123    
124     %%
125     %%
126     \parindent0cm
127     \parskip1.5ex plus0.5ex minus 0.5ex
128     \pagestyle{empty}
129    
130    
131    
132     \definecolor{ndgold}{rgb}{0.87,0.82,0.59}
133     \definecolor{ndgold2}{rgb}{0.96,0.91,0.63}
134 mmeineke 547 \definecolor{ndblue}{rgb}{0,0.1875, 0.6992}
135 mmeineke 546 \definecolor{recoilcolor}{rgb}{1,0,0}
136     \definecolor{occolor}{rgb}{0,1,0}
137     \definecolor{pink}{rgb}{0,1,1}
138    
139    
140    
141    
142    
143     \def\UberStil{\normalfont\sffamily\bfseries\large}
144     \def\UnterStil{\normalfont\sffamily\small}
145     \def\LabelStil{\normalfont\sffamily\tiny}
146     \def\LegStil{\normalfont\sffamily\tiny}
147    
148     %%
149     %% Define some commands
150     %%
151     \definecolor{JG}{rgb}{0.1,0.9,0.3}
152    
153     \newenvironment{kasten}{%
154     \begin{lrbox}{\dummybox}%
155     \begin{minipage}{0.96\linewidth}}%
156     {\end{minipage}%
157     \end{lrbox}%
158     \raisebox{-\depth}{\psshadowbox[framearc=0.05,framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
159     \newenvironment{spalte}{%
160     \setlength\kastenwidth{1.2\textwidth}
161     \divide\kastenwidth by \anzspalten
162     \begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill}
163    
164    
165    
166 mmeineke 551
167 mmeineke 546 \def\op#1{\hat{#1}}
168     \begin{document}
169 mmeineke 553 \bibliographystyle{unsrt}
170 mmeineke 546 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171     %%% Background %%%
172     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
173 mmeineke 551 {\newrgbcolor{gradbegin}{0.0 0.01875 0.6992}%
174 mmeineke 546 \newrgbcolor{gradend}{1 1 1}%{1 1 0.5}%
175     \psframe[fillstyle=gradient,gradend=gradend,%
176     gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)}
177     \vfill
178     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
179     %%% Header %%%
180     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181     \hfill
182     \psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{%
183     \hfill
184 mmeineke 547 \parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}}
185 mmeineke 546 \hfill
186     \parbox[c]{0.8\linewidth}{%
187     \begin{center}
188 mmeineke 547 \color{ndblue}
189 mmeineke 546 \textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em]
190     \textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em]
191     {\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\
192     {\tt\ mmeineke@nd.edu}
193     }
194     \end{center}}
195     \hfill}}\hfill\mbox{}\\[1.cm]
196     %\vspace*{1.3cm}
197     \begin{lrbox}{\spalten}
198     \parbox[t][\textheight]{1.3\textwidth}{%
199     \vspace*{0.2cm}
200     \hfill
201     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202     %%% first column %%%
203     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
204     \begin{spalte}
205     \begin{kasten}
206     %
207     %
208     % This begins the first "kasten" or box
209     %
210     %
211     \begin{center}
212     {\large{\color{red} \underline{ABSTRACT} } }
213     \end{center}
214    
215     {\color{ndblue}
216    
217     A mesoscale model for phospholipids has been developed for molecular
218 mmeineke 553 dynamics simulations of phospholipid phase transitions. The model makes several
219 mmeineke 546 simplifications to both the water and the phospholipids to reduce the
220     computational cost of each force evaluation. The water was represented
221     by the soft sticky dipole model of Ichiye \emph{et
222     al}.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md} The
223     simplifications to the phospholipids included the reduction of atoms
224     in the tail groups to beads representing $\mbox{CH}_{2}$ and
225     $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
226     with a single point mass containing a centrally located dipole. The
227 mmeineke 552 model was then used to simulate micelle formation from a configuration
228     of randomly placed phospholipids which was simulated for times in
229     excess of 20 nanoseconds.
230 mmeineke 546
231     }
232     \end{kasten}
233    
234 mmeineke 550
235     \begin{kasten}
236     \section{{\color{red}\underline{Introduction \& Background}}}
237     \label{sec:intro}
238 mmeineke 546
239 mmeineke 551 %% \subsection{{\color{ndblue}Motivation}}
240 mmeineke 550 \label{sec:motivation}
241 mmeineke 546
242 mmeineke 550
243 mmeineke 553 Simulations of phospholipid phases are, by necessity, quite
244 mmeineke 550 complex. The lipid molecules are large, and contain many
245     atoms. Additionally, the head groups of the lipids are often
246     zwitterions, and the large separation between charges results in a
247     large dipole moment. Adding to the complexity are the number of water
248     molecules needed to properly solvate the lipid bilayer, typically 25
249     water molecules for every lipid molecule. These factors make it
250     difficult to study certain biologically interesting phenomena that
251     have large inherent length or time scale.
252    
253     \end{kasten}
254    
255     \begin{kasten}
256     \subsection{{\color{ndblue}Ripple Phase}}
257    
258     \begin{wrapfigure}{o}{60mm}
259     \centering
260     \includegraphics[width=40mm]{ripple.epsi}
261     \end{wrapfigure}
262    
263     \mbox{}
264     \begin{itemize}
265     \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
266     \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
267     \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
268     \end{itemize}
269    
270     \label{sec:ripplePhase}
271    
272     \end{kasten}
273    
274    
275     \begin{kasten}
276     \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
277     \begin{itemize}
278    
279     \item
280     Drug Diffusion
281     \begin{itemize}
282     \item
283     Some drug molecules may spend appreciable amounts of time in the
284     membrane
285    
286     \item
287     Long time scale dynamics are need to observe and characterize their
288     actions
289     \end{itemize}
290    
291     \item
292     Bilayer Formation Dynamics
293     \begin{itemize}
294     \item
295     Current lipid simulations indicate\cite{Marrink01}:
296     \begin{itemize}
297     \item Aggregation can happen as quickly as 200 ps
298    
299     \item Bilayers can take up to 20 ns to form completely
300     \end{itemize}
301    
302     \end{itemize}
303     \end{itemize}
304     \end{kasten}
305    
306     \begin{kasten}
307 mmeineke 553 \subsection{{\color{ndblue}Our Simplifications}}
308 mmeineke 550 \begin{itemize}
309     \item Unified atoms with fixed bond lengths replace groups of atoms.
310 mmeineke 553 \item Charge distributions are replaced with dipoles.
311 mmeineke 550 \begin{itemize}
312     \item Relatively short range, $\frac{1}{r^3}$, interactions allow
313 mmeineke 553 the application of neighbor lists.
314 mmeineke 550 \end{itemize}
315     \end{itemize}
316     \begin{equation}
317     V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
318     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
319     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
320     -
321     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
322     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
323     {r^{5}_{ij}} \biggr]
324     \label{eq:dipole}
325     \end{equation}
326     \end{kasten}
327    
328    
329    
330 mmeineke 546 \end{spalte}
331     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
332     %%% second column %%%
333     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
334     \begin{spalte}
335    
336    
337 mmeineke 550 \begin{kasten}
338     \subsection{{\color{ndblue}Reduction in calculations}}
339     Unified water and lipid models and decrease the number of interactions
340     needed between two molecules.
341    
342     \begin{center}
343     \includegraphics[width=50mm,angle=-90]{reduction.epsi}
344     \end{center}
345 mmeineke 546 \end{kasten}
346    
347    
348 mmeineke 550 \begin{kasten}
349     \section{{\color{red}\underline{Models}}}
350     \label{sec:model}
351 mmeineke 552 \subsection{{\color{ndblue}The Water Model}}
352 mmeineke 550 \label{sec:waterModel}
353 mmeineke 546
354 mmeineke 550 The waters in the simulation were modeled after the Soft Sticky Dipole
355     (SSD) model of Ichiye.\cite{liu96:new_model} Where:
356 mmeineke 546
357 mmeineke 550 \begin{wrapfigure}[10]{o}{60mm}
358     \begin{center}
359     \includegraphics[width=40mm]{ssd.epsi}
360     \end{center}
361     \end{wrapfigure}
362     \mbox{}
363     \begin{itemize}
364 mmeineke 552 \item $\sigma$ is the Lennard-Jones length parameter
365     \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$
366 mmeineke 550 \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
367 mmeineke 552 \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively
368 mmeineke 550 \end{itemize}
369    
370     It's potential is as follows:
371     \begin{equation}
372     V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
373     + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
374 mmeineke 552 \label{eq:ssdPot}
375 mmeineke 550 \end{equation}
376 mmeineke 553 Where $V_{d\!p}(r_{i\!j})$ is given in Eq.~\ref{eq:dipole}, and $V_{L\!J}(r_{i\!j})$ is the Lennard-Jones potential.
377 mmeineke 550 \end{kasten}
378    
379 mmeineke 552 \begin{kasten}
380     \subsection{{\color{ndblue}Soft Sticky Potential}}
381     \label{sec:SSeq}
382 mmeineke 550
383 mmeineke 552 Hydrogen bonding in the SSD model is described by the
384     $V_{\text{sp}}$ term in Eq.~\ref{eq:ssdPot}. Its form is as follows:
385     \begin{equation}
386     V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
387     \boldsymbol{\Omega}_{j}) =
388     v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
389     \boldsymbol{\Omega}_{j})
390     +
391     s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
392     \boldsymbol{\Omega}_{j})]
393     \label{eq:spPot}
394     \end{equation}
395     Where $v^\circ$ scales the strength of the interaction.
396     $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
397     and
398     $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
399     are responsible for the tetrahedral potential and a correction to the
400     tetrahedral potential respectively. They are,
401     \begin{equation}
402     w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
403     \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
404     + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
405     \label{eq:spPot2}
406 mmeineke 553 \end{equation}
407 mmeineke 552 and
408     \begin{equation}
409     \begin{split}
410     w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
411     &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
412     &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
413     \end{split}
414     \label{eq:spCorrection}
415     \end{equation}
416     The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical
417     coordinates of the position of molecule $j$ in the reference frame
418     fixed on molecule $i$ with the z-axis aligned with the dipole moment.
419     The correction
420     $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
421     is needed because
422     $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
423     vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. Finally, the
424     potential is scaled by the switching function $s(r_{ij})$,
425     which scales smoothly from 0 to 1.
426     \begin{equation}
427     s(r_{ij}) =
428     \begin{cases}
429     1& \text{if $r_{ij} < r_{L}$}, \\
430     \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
431     - 3r_{L})}{(r_{U}-r_{L})^3}&
432     \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
433     0& \text{if $r_{ij} \geq r_{U}$}.
434     \end{cases}
435     \label{eq:spCutoff}
436     \end{equation}
437 mmeineke 550
438 mmeineke 552 \end{kasten}
439 mmeineke 550
440 mmeineke 552
441 mmeineke 546 \end{spalte}
442     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
443     %%% third column %%%
444     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
445     \begin{spalte}
446    
447 mmeineke 552 \begin{kasten}
448     \subsection{{\color{ndblue}Hydrogen Bonding in SSD}}
449     \label{sec:hbonding}
450 mmeineke 546
451 mmeineke 552 The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$
452     recreates the hydrogen bonding network of water.
453     \begin{center}
454     \begin{minipage}{100mm}
455     \begin{minipage}[t]{48mm}
456     \begin{center}
457     \includegraphics[width=48mm]{iced_final.eps}\\
458     SSD Relaxed on a diamond lattice
459     \end{center}
460     \end{minipage}
461     \hspace{4mm}%
462     \begin{minipage}[t]{48mm}
463     \begin{center}
464     \includegraphics[width=48mm]{dipoled_final.eps}\\
465     Stockmayer Spheres relaxed on a diamond lattice
466     \end{center}
467     \end{minipage}
468     \end{minipage}
469 mmeineke 546
470 mmeineke 552 \end{center}
471    
472 mmeineke 546
473 mmeineke 552 \end{kasten}
474    
475    
476     \begin{kasten}
477    
478     \subsection{{\color{ndblue}The Lipid Model}}
479     \label{sec:lipidModel}
480    
481     \begin{center}
482     \includegraphics[width=25mm,angle=-90]{lipidModel.epsi}
483     \end{center}
484    
485     \begin{itemize}
486 mmeineke 553 \item PC \& PE head groups are replaced by a Lennard-Jones sphere containing a dipole at its center
487 mmeineke 552 \item Atoms in the tail chains modeled as unified groups of atoms
488     \item Tail group interaction parameters based on those of TraPPE\cite{Siepmann1998}
489     \end{itemize}
490    
491     The total potential is given by:
492     \begin{equation}
493     V_{\text{lipid}} =
494     \sum_{i}V_{i}^{\text{internal}}
495     + \sum_i \sum_{j>i} \sum_{\text{$\alpha$ in $i$}}
496     \sum_{\text{$\beta$ in $j$}}
497     V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}})
498     +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
499     \end{equation}
500     Where
501     \begin{equation}
502     V_{i}^{\text{internal}} =
503     \sum_{\text{bends}}V_{\text{bend}}(\theta_{\alpha\beta\gamma})
504     + \sum_{\text{torsions}}V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
505     + \sum_{\alpha} \sum_{\beta>\alpha}V_{\text{LJ}}(r_{\alpha \beta})
506     \end{equation}
507     The bend and torsion potentials were of the form:
508     \begin{equation}
509     V_{\text{bend}}(\theta_{\alpha\beta\gamma})
510     = k_{\theta}\frac{(\theta_{\alpha\beta\gamma} - \theta_0)^2}{2}
511     \label{eq:bendPot}
512     \end{equation}
513     \begin{equation}
514     V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
515     = c_1 [1+\cos\phi_{\alpha\beta\gamma\zeta}]
516     + c_2 [1 - \cos(2\phi_{\alpha\beta\gamma\zeta})]
517     + c_3 [1 + \cos(3\phi_{\alpha\beta\gamma\zeta})]
518     \label{eq:torsPot}
519     \end{equation}
520    
521    
522     \end{kasten}
523    
524     \begin{kasten}
525    
526     \section{{\color{red}\underline{Initial Results}}}
527 mmeineke 553 \label{sec:results}
528     \subsection{{\color{ndblue}Simulation Snapshots:50 lipids in a sea of 1384 waters}}
529 mmeineke 552 \label{sec:r50snapshots}
530    
531     \begin{center}
532     \includegraphics[width=105mm]{r50-montage.eps}
533     \end{center}
534    
535     \end{kasten}
536    
537    
538 mmeineke 546 \end{spalte}
539     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
540     %%% fourth column %%%
541     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
542     \begin{spalte}
543    
544 mmeineke 552 \begin{kasten}
545    
546     \subsection{{\color{ndblue}Position and Angular Correlations}}
547     \label{sec:r50corr}
548 mmeineke 546
549 mmeineke 552 \begin{center}
550     \begin{minipage}{110mm}
551     \begin{minipage}[t]{55mm}
552     \begin{center}
553     \includegraphics[width=36mm,angle=-90]{r50-HEAD-HEAD.epsi}\\
554     The self correlation of the head groups
555     \end{center}
556     \end{minipage}
557     \begin{minipage}[t]{55mm}
558     \begin{center}
559     \includegraphics[width=36mm,angle=-90]{r50-CH2-CH2.epsi}\\
560     The self correlation of the tail beads.
561     \end{center}
562     \end{minipage}
563     \end{minipage}
564     \end{center}
565     \begin{equation}
566     g(r) = \frac{V}{N_{\text{pairs}}}\langle \sum_{i} \sum_{j > i}
567     \delta(|\mathbf{r} - \mathbf{r}_{ij}|) \rangle
568     \label{eq:gofr}
569     \end{equation}
570     \begin{equation}
571     g_{\gamma}(r) = \langle \sum_i \sum_{j>i}
572     (\cos \gamma_{ij}) \delta(| \mathbf{r} - \mathbf{r}_{ij}|) \rangle
573     \label{eq:gammaofr}
574     \end{equation}
575 mmeineke 546
576 mmeineke 552 \end{kasten}
577 mmeineke 546
578    
579 mmeineke 552 \begin{kasten}
580    
581     \subsection{{\color{red}\underline{Discussion}}}
582     \label{sec:discussion}
583    
584     The initial results show much promise for the model. The
585     system of 50 lipids was able to form micelles quickly, however
586     bilayer formation was not seen on the time scale of the
587     current simulation. Current simulations are exploring the
588 mmeineke 553 parameter space of the model when the tail beads are larger than
589 mmeineke 552 the head group. This should help to drive the system toward a
590     bilayer rather than a micelle. Work is also being done on the
591     simulation engine to allow for the box size of the system to
592     be adjustable in all three dimensions to allow for constant
593     pressure.
594    
595     \end{kasten}
596    
597    
598 mmeineke 546 \begin{kasten}
599     \begin{center}
600     {\large{\color{red} \underline{Acknowledgments}}}
601     \end{center}
602    
603     The authors would like to acknowledge Charles Vardeman, Christopher
604     Fennell, and Teng lin for their contributions to the simulation
605     engine. MAM would also like to extend a special thank you to Charles
606 mmeineke 552 Vardeman for his help with the \TeX formatting of this
607     poster. Computation time was provided on the Notre Dame Bunch-of-Boxes (B.o.B.)
608 mmeineke 546 cluster under NSF grant DMR 00 79647. The authors acknowledge support
609     under NSF grant CHE-0134881.
610    
611     \end{kasten}
612    
613     \vspace{0.5cm}
614     \begin{kasten}
615     {\small
616     \bibliography{poster}
617     }
618     \end{kasten}
619     \end{spalte}
620     }
621     \end{lrbox}
622     \resizebox*{0.98\textwidth}{!}{%
623     \usebox{\spalten}}\hfill\mbox{}\vfill
624     \end{document}