ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
Revision: 550
Committed: Fri Jun 6 21:43:40 2003 UTC (21 years, 3 months ago) by mmeineke
Content type: application/x-tex
File size: 12914 byte(s)
Log Message:
about halfway there.

File Contents

# User Rev Content
1 mmeineke 546 %% this is my poster for the Midwest Theoretical Conference
2    
3    
4     \documentclass[10pt]{scrartcl}
5     %%
6     %
7     % This is a poster template with latex macros and using
8     % the University of Florida Logo. For further information
9     % on making postscript, resizeing, and printing the poster file
10     % please see web site
11     % http://www.phys.ufl.edu/~pjh/posters/poster_howto_UF.html
12     %
13     % N.B. This format is cribbed from one obtained from the University
14     % of Karlsruhe, so some macro names and parameters are in German
15     % Here is a short glosary:
16     % Breite: width
17     % Hoehe: height
18     % Spalte: column
19     % Kasten: box
20     %
21     % All style files necessary are part of standard TeTeX distribution
22     % On the UF unix cluster you should not need to import these files
23     % specially, as they will be automatically located. If you
24     % run on a local PC however, you will need to locate these files.
25     % At UF try /usr/local/TeTeX...
26     %
27     % P. Hirschfeld 2/11/00
28     %
29     % The recommended procedure is to first generate a ``Special Format" size poster
30     % file, which is relatively easy to manipulate and view. It can be
31     % resized later to A0 (900 x 1100 mm) full poster size, or A4 or Letter size
32     % as desired (see web site). Note the large format printers currently
33     % in use at UF's OIR have max width of about 90cm or 3 ft., but the paper
34     % comes in rolls so the length is variable. See below the specifications
35     % for width and height of various formats. Default in the template is
36     % ``Special Format", with 4 columns.
37     %%
38     %%
39     %% Choose your poster size:
40     %% For printing you will later RESIZE your poster by a factor
41     %% 2*sqrt(2) = 2.828 (for A0)
42     %% 2 = 2.00 (for A1)
43     %%
44     %%
45     %%\def\breite{452mm} % Gives a 4.1 foot width
46     \def\breite{390mm} % Special Format.
47     \def\hoehe{319.2mm} % Scaled by 2.82 this gives 110cm x 90cm
48     \def\anzspalten{4}
49     %%
50     %%\def\breite{420mm} % A3 LANDSCAPE
51     %%\def\hoehe{297mm}
52     %%\def\anzspalten{4}
53     %%
54     %% \def\breite{297mm} % A3 PORTRAIT
55     %% \def\hoehe{420mm}
56     %% \def\anzspalten{3}
57     %%
58     %% \def\breite{210mm} % A4 PORTRAIT
59     %% \def\hoehe{297mm}
60     %% \def\anzspalten{2}
61     %%
62     %%
63     %% Procedure:
64     %% Generate poster.dvi with latex
65     %% Check with Ghostview
66     %% Make a .ps-file with ``dvips -o poster.ps poster''
67     %% Scale it with poster_resize poster.ps S
68     %% where S is scale factor
69     %% for Special Format->A0 S= 2.828 (= 2^(3/2)))
70     %% for Special Format->A1 S= 2 (= 2^(2/2)))
71     %%
72     %% Sizes (European:)
73     %% A3: 29.73 X 42.04 cm
74     %% A1: 59.5 X 84.1 cm
75     %% A0: 84.1 X 118.9 cm
76     %% N.B. The recommended procedure is ``Special Format x 2.82"
77     %% which gives 90cm x 110cm (not quite A0 dimensions).
78     %%
79     %% --------------------------------------------------------------------------
80     %%
81     %% Load the necessary packages
82     %%
83 mmeineke 549 %%\usepackage{berkeley}
84     \usepackage{palatino}
85 mmeineke 546 \usepackage[latin1]{inputenc}
86     \usepackage{epsf}
87     \usepackage{graphicx,psfrag,color,pstcol,pst-grad}
88     \usepackage{amsmath,amssymb}
89     \usepackage{latexsym}
90     \usepackage{calc}
91     \usepackage{multicol}
92    
93     %% My Packages
94 mmeineke 550 \usepackage{wrapfig}
95 mmeineke 546
96     %%
97     %% Define the required numbers, lengths and boxes
98     %%
99     \newsavebox{\dummybox}
100     \newsavebox{\spalten}
101     %\input psfig.sty
102    
103     %%
104     %%
105     \newlength{\bgwidth}\newlength{\bgheight}
106     \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
107     \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
108    
109     \newlength{\kastenwidth}
110    
111     %% Set paper format
112     \setlength\paperheight{\hoehe}
113     \setlength\paperwidth{\breite}
114     \special{papersize=\breite,\hoehe}
115    
116     \topmargin -1in
117     \marginparsep0mm
118     \marginparwidth0mm
119     \headheight0mm
120     \headsep0mm
121    
122    
123     %% Minimal Margins to Make Correct Bounding Box
124     \setlength{\oddsidemargin}{-2.44cm}
125     \addtolength{\topmargin}{-3mm}
126     \textwidth\paperwidth
127     \textheight\paperheight
128    
129     %%
130     %%
131     \parindent0cm
132     \parskip1.5ex plus0.5ex minus 0.5ex
133     \pagestyle{empty}
134    
135    
136    
137     \definecolor{ndgold}{rgb}{0.87,0.82,0.59}
138     \definecolor{ndgold2}{rgb}{0.96,0.91,0.63}
139 mmeineke 547 \definecolor{ndblue}{rgb}{0,0.1875, 0.6992}
140 mmeineke 546 \definecolor{recoilcolor}{rgb}{1,0,0}
141     \definecolor{occolor}{rgb}{0,1,0}
142     \definecolor{pink}{rgb}{0,1,1}
143    
144    
145    
146    
147    
148     \def\UberStil{\normalfont\sffamily\bfseries\large}
149     \def\UnterStil{\normalfont\sffamily\small}
150     \def\LabelStil{\normalfont\sffamily\tiny}
151     \def\LegStil{\normalfont\sffamily\tiny}
152    
153     %%
154     %% Define some commands
155     %%
156     \definecolor{JG}{rgb}{0.1,0.9,0.3}
157    
158     \newenvironment{kasten}{%
159     \begin{lrbox}{\dummybox}%
160     \begin{minipage}{0.96\linewidth}}%
161     {\end{minipage}%
162     \end{lrbox}%
163     \raisebox{-\depth}{\psshadowbox[framearc=0.05,framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
164     \newenvironment{spalte}{%
165     \setlength\kastenwidth{1.2\textwidth}
166     \divide\kastenwidth by \anzspalten
167     \begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill}
168    
169     %%\renewcommand{\emph}[1]{{\color{red}\textbf{#1}}}
170    
171    
172     \def\op#1{\hat{#1}}
173     \begin{document}
174     \bibliographystyle{plain}
175     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
176     %%% Background %%%
177     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
178 mmeineke 547
179     %%{\newrgbcolor{gradbegin}{0.87 0.82 0.59}%
180     {\newrgbcolor{gradbegin}{0.0 0.1875 0.6992}%
181 mmeineke 546 \newrgbcolor{gradend}{1 1 1}%{1 1 0.5}%
182     \psframe[fillstyle=gradient,gradend=gradend,%
183     gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)}
184     \vfill
185     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
186     %%% Header %%%
187     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
188     \hfill
189     \psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{%
190     \hfill
191 mmeineke 547 \parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}}
192 mmeineke 546 \hfill
193     \parbox[c]{0.8\linewidth}{%
194     \begin{center}
195 mmeineke 547 \color{ndblue}
196 mmeineke 546 \textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em]
197     \textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em]
198     {\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\
199     {\tt\ mmeineke@nd.edu}
200     }
201     \end{center}}
202     \hfill}}\hfill\mbox{}\\[1.cm]
203     %\vspace*{1.3cm}
204     \begin{lrbox}{\spalten}
205     \parbox[t][\textheight]{1.3\textwidth}{%
206     \vspace*{0.2cm}
207     \hfill
208     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
209     %%% first column %%%
210     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
211    
212    
213     \begin{spalte}
214     \begin{kasten}
215     %
216     %
217     % This begins the first "kasten" or box
218     %
219     %
220     \begin{center}
221     {\large{\color{red} \underline{ABSTRACT} } }
222     \end{center}
223    
224     {\color{ndblue}
225    
226     A mesoscale model for phospholipids has been developed for molecular
227     dynamics simulations of lipid bilayers. The model makes several
228     simplifications to both the water and the phospholipids to reduce the
229     computational cost of each force evaluation. The water was represented
230     by the soft sticky dipole model of Ichiye \emph{et
231     al}.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md} The
232     simplifications to the phospholipids included the reduction of atoms
233     in the tail groups to beads representing $\mbox{CH}_{2}$ and
234     $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
235     with a single point mass containing a centrally located dipole. The
236     model was then used to simulate micelle and bilayer formation from a
237     configuration of randomly placed phospholipids which was simulated for
238     times in excess of 30 nanoseconds.
239    
240     }
241     \end{kasten}
242    
243 mmeineke 550
244     \begin{kasten}
245     \section{{\color{red}\underline{Introduction \& Background}}}
246     \label{sec:intro}
247 mmeineke 546
248 mmeineke 550 \subsection{{\color{ndblue}Motivation}}
249     \label{sec:motivation}
250 mmeineke 546
251 mmeineke 550
252     Simulations of phospholipid bilayers are, by necessity, quite
253     complex. The lipid molecules are large, and contain many
254     atoms. Additionally, the head groups of the lipids are often
255     zwitterions, and the large separation between charges results in a
256     large dipole moment. Adding to the complexity are the number of water
257     molecules needed to properly solvate the lipid bilayer, typically 25
258     water molecules for every lipid molecule. These factors make it
259     difficult to study certain biologically interesting phenomena that
260     have large inherent length or time scale.
261    
262     \end{kasten}
263    
264     \begin{kasten}
265     \subsection{{\color{ndblue}Ripple Phase}}
266    
267     \begin{wrapfigure}{o}{60mm}
268     \centering
269     \includegraphics[width=40mm]{ripple.epsi}
270     \end{wrapfigure}
271    
272     \mbox{}
273     \begin{itemize}
274     \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
275     \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
276     \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
277     \end{itemize}
278    
279     \label{sec:ripplePhase}
280    
281     \end{kasten}
282    
283    
284     \begin{kasten}
285     \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
286     \begin{itemize}
287    
288     \item
289     Drug Diffusion
290     \begin{itemize}
291     \item
292     Some drug molecules may spend appreciable amounts of time in the
293     membrane
294    
295     \item
296     Long time scale dynamics are need to observe and characterize their
297     actions
298     \end{itemize}
299    
300     \item
301     Bilayer Formation Dynamics
302     \begin{itemize}
303     \item
304     Current lipid simulations indicate\cite{Marrink01}:
305     \begin{itemize}
306     \item Aggregation can happen as quickly as 200 ps
307    
308     \item Bilayers can take up to 20 ns to form completely
309     \end{itemize}
310    
311     \end{itemize}
312     \end{itemize}
313     \end{kasten}
314    
315     \begin{kasten}
316     \subsection{{\color{ndblue}System Simplfications}}
317     \begin{itemize}
318     \item Unified atoms with fixed bond lengths replace groups of atoms.
319     \item Replace charge distributions with dipoles.(Eq. \ref{eq:dipole}
320     vs. Eq. \ref{eq:coloumb})
321     \begin{itemize}
322     \item Relatively short range, $\frac{1}{r^3}$, interactions allow
323     the application of computational simplification algorithms,
324     ie. neighbor lists.
325     \end{itemize}
326     \end{itemize}
327     \begin{equation}
328     V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
329     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
330     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
331     -
332     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
333     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
334     {r^{5}_{ij}} \biggr]
335     \label{eq:dipole}
336     \end{equation}
337     \begin{equation}
338     V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
339     {4\pi\epsilon_{0} r_{ij}}
340     \label{eq:coloumb}
341     \end{equation}
342     \end{kasten}
343    
344    
345    
346 mmeineke 546 \end{spalte}
347     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
348     %%% second column %%%
349     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
350     \begin{spalte}
351    
352    
353 mmeineke 550 \begin{kasten}
354     \subsection{{\color{ndblue}Reduction in calculations}}
355     Unified water and lipid models and decrease the number of interactions
356     needed between two molecules.
357    
358     \begin{center}
359     \includegraphics[width=50mm,angle=-90]{reduction.epsi}
360     \end{center}
361 mmeineke 546 \end{kasten}
362    
363    
364 mmeineke 550 \begin{kasten}
365     \section{{\color{red}\underline{Models}}}
366     \label{sec:model}
367     \subsection{{\color{ndblue}Water Model}}
368     \label{sec:waterModel}
369 mmeineke 546
370 mmeineke 550 The waters in the simulation were modeled after the Soft Sticky Dipole
371     (SSD) model of Ichiye.\cite{liu96:new_model} Where:
372 mmeineke 546
373 mmeineke 550 \begin{wrapfigure}[10]{o}{60mm}
374     \begin{center}
375     \includegraphics[width=40mm]{ssd.epsi}
376     \end{center}
377     \end{wrapfigure}
378     \mbox{}
379     \begin{itemize}
380     \item $\sigma$ is the Lennard-Jones length parameter.
381     \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$,
382     \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
383     \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively.
384     \end{itemize}
385    
386     It's potential is as follows:
387    
388     \begin{equation}
389     V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
390     + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
391     \end{equation}
392    
393    
394     \end{kasten}
395    
396    
397    
398    
399 mmeineke 546 \end{spalte}
400     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
401     %%% third column %%%
402     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
403     \begin{spalte}
404    
405     \begin{kasten}
406 mmeineke 549
407     \section{{\color{ndblue}Ima third column holder}}
408    
409 mmeineke 546 hello
410    
411     \end{kasten}
412    
413    
414     \end{spalte}
415     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
416     %%% fourth column %%%
417     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
418     \begin{spalte}
419    
420    
421    
422    
423    
424     \begin{kasten}
425     \begin{center}
426     {\large{\color{red} \underline{Acknowledgments}}}
427     \end{center}
428    
429     The authors would like to acknowledge Charles Vardeman, Christopher
430     Fennell, and Teng lin for their contributions to the simulation
431     engine. MAM would also like to extend a special thank you to Charles
432     Vardeman for his help with the TeX formatting of this
433     poster. Computaion time was provided on the Bunch-of-Boxes (B.o.B.)
434     cluster under NSF grant DMR 00 79647. The authors acknowledge support
435     under NSF grant CHE-0134881.
436    
437     \end{kasten}
438    
439     \vspace{0.5cm}
440     \begin{kasten}
441     {\small
442     \bibliography{poster}
443     }
444     \end{kasten}
445     \end{spalte}
446     }
447     \end{lrbox}
448     \resizebox*{0.98\textwidth}{!}{%
449     \usebox{\spalten}}\hfill\mbox{}\vfill
450     \end{document}