ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
Revision: 551
Committed: Mon Jun 9 15:22:52 2003 UTC (21 years, 3 months ago) by mmeineke
Content type: application/x-tex
File size: 12726 byte(s)
Log Message:
fixed the left alignment bug. Bugger if I know what was causing it.

File Contents

# User Rev Content
1 mmeineke 546 %% this is my poster for the Midwest Theoretical Conference
2    
3    
4     \documentclass[10pt]{scrartcl}
5     %%
6     %
7     % This is a poster template with latex macros and using
8     % the University of Florida Logo. For further information
9     % on making postscript, resizeing, and printing the poster file
10     % please see web site
11     % http://www.phys.ufl.edu/~pjh/posters/poster_howto_UF.html
12     %
13     % N.B. This format is cribbed from one obtained from the University
14     % of Karlsruhe, so some macro names and parameters are in German
15     % Here is a short glosary:
16     % Breite: width
17     % Hoehe: height
18     % Spalte: column
19     % Kasten: box
20     %
21     % All style files necessary are part of standard TeTeX distribution
22     % On the UF unix cluster you should not need to import these files
23     % specially, as they will be automatically located. If you
24     % run on a local PC however, you will need to locate these files.
25     % At UF try /usr/local/TeTeX...
26     %
27     % P. Hirschfeld 2/11/00
28     %
29     % The recommended procedure is to first generate a ``Special Format" size poster
30     % file, which is relatively easy to manipulate and view. It can be
31     % resized later to A0 (900 x 1100 mm) full poster size, or A4 or Letter size
32     % as desired (see web site). Note the large format printers currently
33     % in use at UF's OIR have max width of about 90cm or 3 ft., but the paper
34     % comes in rolls so the length is variable. See below the specifications
35     % for width and height of various formats. Default in the template is
36     % ``Special Format", with 4 columns.
37     %%
38     %%
39     %% Choose your poster size:
40     %% For printing you will later RESIZE your poster by a factor
41     %% 2*sqrt(2) = 2.828 (for A0)
42     %% 2 = 2.00 (for A1)
43     %%
44     %%
45 mmeineke 551 \def\breite{390mm} % Special Format.
46 mmeineke 546 \def\hoehe{319.2mm} % Scaled by 2.82 this gives 110cm x 90cm
47     \def\anzspalten{4}
48     %%
49     %%\def\breite{420mm} % A3 LANDSCAPE
50     %%\def\hoehe{297mm}
51     %%\def\anzspalten{4}
52     %%
53     %% \def\breite{297mm} % A3 PORTRAIT
54     %% \def\hoehe{420mm}
55     %% \def\anzspalten{3}
56     %%
57     %% \def\breite{210mm} % A4 PORTRAIT
58     %% \def\hoehe{297mm}
59     %% \def\anzspalten{2}
60     %%
61     %%
62     %% Procedure:
63     %% Generate poster.dvi with latex
64     %% Check with Ghostview
65     %% Make a .ps-file with ``dvips -o poster.ps poster''
66     %% Scale it with poster_resize poster.ps S
67     %% where S is scale factor
68     %% for Special Format->A0 S= 2.828 (= 2^(3/2)))
69     %% for Special Format->A1 S= 2 (= 2^(2/2)))
70     %%
71     %% Sizes (European:)
72     %% A3: 29.73 X 42.04 cm
73     %% A1: 59.5 X 84.1 cm
74     %% A0: 84.1 X 118.9 cm
75     %% N.B. The recommended procedure is ``Special Format x 2.82"
76     %% which gives 90cm x 110cm (not quite A0 dimensions).
77     %%
78     %% --------------------------------------------------------------------------
79     %%
80     %% Load the necessary packages
81     %%
82 mmeineke 549 \usepackage{palatino}
83 mmeineke 546 \usepackage[latin1]{inputenc}
84     \usepackage{epsf}
85     \usepackage{graphicx,psfrag,color,pstcol,pst-grad}
86     \usepackage{amsmath,amssymb}
87     \usepackage{latexsym}
88     \usepackage{calc}
89     \usepackage{multicol}
90 mmeineke 550 \usepackage{wrapfig}
91 mmeineke 546 %%
92     %% Define the required numbers, lengths and boxes
93     %%
94     \newsavebox{\dummybox}
95     \newsavebox{\spalten}
96     %\input psfig.sty
97    
98     %%
99     %%
100     \newlength{\bgwidth}\newlength{\bgheight}
101     \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
102     \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
103    
104     \newlength{\kastenwidth}
105    
106     %% Set paper format
107     \setlength\paperheight{\hoehe}
108     \setlength\paperwidth{\breite}
109     \special{papersize=\breite,\hoehe}
110    
111     \topmargin -1in
112     \marginparsep0mm
113     \marginparwidth0mm
114     \headheight0mm
115     \headsep0mm
116    
117    
118     %% Minimal Margins to Make Correct Bounding Box
119     \setlength{\oddsidemargin}{-2.44cm}
120     \addtolength{\topmargin}{-3mm}
121     \textwidth\paperwidth
122     \textheight\paperheight
123    
124     %%
125     %%
126     \parindent0cm
127     \parskip1.5ex plus0.5ex minus 0.5ex
128     \pagestyle{empty}
129    
130    
131    
132     \definecolor{ndgold}{rgb}{0.87,0.82,0.59}
133     \definecolor{ndgold2}{rgb}{0.96,0.91,0.63}
134 mmeineke 547 \definecolor{ndblue}{rgb}{0,0.1875, 0.6992}
135 mmeineke 546 \definecolor{recoilcolor}{rgb}{1,0,0}
136     \definecolor{occolor}{rgb}{0,1,0}
137     \definecolor{pink}{rgb}{0,1,1}
138    
139    
140    
141    
142    
143     \def\UberStil{\normalfont\sffamily\bfseries\large}
144     \def\UnterStil{\normalfont\sffamily\small}
145     \def\LabelStil{\normalfont\sffamily\tiny}
146     \def\LegStil{\normalfont\sffamily\tiny}
147    
148     %%
149     %% Define some commands
150     %%
151     \definecolor{JG}{rgb}{0.1,0.9,0.3}
152    
153     \newenvironment{kasten}{%
154     \begin{lrbox}{\dummybox}%
155     \begin{minipage}{0.96\linewidth}}%
156     {\end{minipage}%
157     \end{lrbox}%
158     \raisebox{-\depth}{\psshadowbox[framearc=0.05,framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
159     \newenvironment{spalte}{%
160     \setlength\kastenwidth{1.2\textwidth}
161     \divide\kastenwidth by \anzspalten
162     \begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill}
163    
164    
165    
166 mmeineke 551
167 mmeineke 546 \def\op#1{\hat{#1}}
168     \begin{document}
169     \bibliographystyle{plain}
170     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171     %%% Background %%%
172     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
173 mmeineke 551 {\newrgbcolor{gradbegin}{0.0 0.01875 0.6992}%
174 mmeineke 546 \newrgbcolor{gradend}{1 1 1}%{1 1 0.5}%
175     \psframe[fillstyle=gradient,gradend=gradend,%
176     gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)}
177     \vfill
178     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
179     %%% Header %%%
180     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181     \hfill
182     \psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{%
183     \hfill
184 mmeineke 547 \parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}}
185 mmeineke 546 \hfill
186     \parbox[c]{0.8\linewidth}{%
187     \begin{center}
188 mmeineke 547 \color{ndblue}
189 mmeineke 546 \textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em]
190     \textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em]
191     {\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\
192     {\tt\ mmeineke@nd.edu}
193     }
194     \end{center}}
195     \hfill}}\hfill\mbox{}\\[1.cm]
196     %\vspace*{1.3cm}
197     \begin{lrbox}{\spalten}
198     \parbox[t][\textheight]{1.3\textwidth}{%
199     \vspace*{0.2cm}
200     \hfill
201     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202     %%% first column %%%
203     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
204     \begin{spalte}
205     \begin{kasten}
206     %
207     %
208     % This begins the first "kasten" or box
209     %
210     %
211     \begin{center}
212     {\large{\color{red} \underline{ABSTRACT} } }
213     \end{center}
214    
215     {\color{ndblue}
216    
217     A mesoscale model for phospholipids has been developed for molecular
218     dynamics simulations of lipid bilayers. The model makes several
219     simplifications to both the water and the phospholipids to reduce the
220     computational cost of each force evaluation. The water was represented
221     by the soft sticky dipole model of Ichiye \emph{et
222     al}.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md} The
223     simplifications to the phospholipids included the reduction of atoms
224     in the tail groups to beads representing $\mbox{CH}_{2}$ and
225     $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
226     with a single point mass containing a centrally located dipole. The
227     model was then used to simulate micelle and bilayer formation from a
228     configuration of randomly placed phospholipids which was simulated for
229     times in excess of 30 nanoseconds.
230    
231     }
232     \end{kasten}
233    
234 mmeineke 550
235     \begin{kasten}
236     \section{{\color{red}\underline{Introduction \& Background}}}
237     \label{sec:intro}
238 mmeineke 546
239 mmeineke 551 %% \subsection{{\color{ndblue}Motivation}}
240 mmeineke 550 \label{sec:motivation}
241 mmeineke 546
242 mmeineke 550
243     Simulations of phospholipid bilayers are, by necessity, quite
244     complex. The lipid molecules are large, and contain many
245     atoms. Additionally, the head groups of the lipids are often
246     zwitterions, and the large separation between charges results in a
247     large dipole moment. Adding to the complexity are the number of water
248     molecules needed to properly solvate the lipid bilayer, typically 25
249     water molecules for every lipid molecule. These factors make it
250     difficult to study certain biologically interesting phenomena that
251     have large inherent length or time scale.
252    
253     \end{kasten}
254    
255     \begin{kasten}
256     \subsection{{\color{ndblue}Ripple Phase}}
257    
258     \begin{wrapfigure}{o}{60mm}
259     \centering
260     \includegraphics[width=40mm]{ripple.epsi}
261     \end{wrapfigure}
262    
263     \mbox{}
264     \begin{itemize}
265     \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
266     \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
267     \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
268     \end{itemize}
269    
270     \label{sec:ripplePhase}
271    
272     \end{kasten}
273    
274    
275     \begin{kasten}
276     \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
277     \begin{itemize}
278    
279     \item
280     Drug Diffusion
281     \begin{itemize}
282     \item
283     Some drug molecules may spend appreciable amounts of time in the
284     membrane
285    
286     \item
287     Long time scale dynamics are need to observe and characterize their
288     actions
289     \end{itemize}
290    
291     \item
292     Bilayer Formation Dynamics
293     \begin{itemize}
294     \item
295     Current lipid simulations indicate\cite{Marrink01}:
296     \begin{itemize}
297     \item Aggregation can happen as quickly as 200 ps
298    
299     \item Bilayers can take up to 20 ns to form completely
300     \end{itemize}
301    
302     \end{itemize}
303     \end{itemize}
304     \end{kasten}
305    
306     \begin{kasten}
307     \subsection{{\color{ndblue}System Simplfications}}
308     \begin{itemize}
309     \item Unified atoms with fixed bond lengths replace groups of atoms.
310     \item Replace charge distributions with dipoles.(Eq. \ref{eq:dipole}
311     vs. Eq. \ref{eq:coloumb})
312     \begin{itemize}
313     \item Relatively short range, $\frac{1}{r^3}$, interactions allow
314     the application of computational simplification algorithms,
315     ie. neighbor lists.
316     \end{itemize}
317     \end{itemize}
318     \begin{equation}
319     V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
320     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
321     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
322     -
323     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
324     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
325     {r^{5}_{ij}} \biggr]
326     \label{eq:dipole}
327     \end{equation}
328     \begin{equation}
329     V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
330     {4\pi\epsilon_{0} r_{ij}}
331     \label{eq:coloumb}
332     \end{equation}
333     \end{kasten}
334    
335    
336    
337 mmeineke 546 \end{spalte}
338     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
339     %%% second column %%%
340     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
341     \begin{spalte}
342    
343    
344 mmeineke 550 \begin{kasten}
345     \subsection{{\color{ndblue}Reduction in calculations}}
346     Unified water and lipid models and decrease the number of interactions
347     needed between two molecules.
348    
349     \begin{center}
350     \includegraphics[width=50mm,angle=-90]{reduction.epsi}
351     \end{center}
352 mmeineke 546 \end{kasten}
353    
354    
355 mmeineke 550 \begin{kasten}
356     \section{{\color{red}\underline{Models}}}
357     \label{sec:model}
358     \subsection{{\color{ndblue}Water Model}}
359     \label{sec:waterModel}
360 mmeineke 546
361 mmeineke 550 The waters in the simulation were modeled after the Soft Sticky Dipole
362     (SSD) model of Ichiye.\cite{liu96:new_model} Where:
363 mmeineke 546
364 mmeineke 550 \begin{wrapfigure}[10]{o}{60mm}
365     \begin{center}
366     \includegraphics[width=40mm]{ssd.epsi}
367     \end{center}
368     \end{wrapfigure}
369     \mbox{}
370     \begin{itemize}
371     \item $\sigma$ is the Lennard-Jones length parameter.
372     \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$,
373     \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
374     \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively.
375     \end{itemize}
376    
377     It's potential is as follows:
378    
379     \begin{equation}
380     V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
381     + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
382     \end{equation}
383    
384    
385     \end{kasten}
386    
387    
388    
389    
390 mmeineke 546 \end{spalte}
391     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
392     %%% third column %%%
393     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
394     \begin{spalte}
395    
396     \begin{kasten}
397 mmeineke 549
398     \section{{\color{ndblue}Ima third column holder}}
399    
400 mmeineke 546 hello
401    
402     \end{kasten}
403    
404    
405     \end{spalte}
406     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
407     %%% fourth column %%%
408     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
409     \begin{spalte}
410    
411    
412    
413    
414    
415     \begin{kasten}
416     \begin{center}
417     {\large{\color{red} \underline{Acknowledgments}}}
418     \end{center}
419    
420     The authors would like to acknowledge Charles Vardeman, Christopher
421     Fennell, and Teng lin for their contributions to the simulation
422     engine. MAM would also like to extend a special thank you to Charles
423     Vardeman for his help with the TeX formatting of this
424     poster. Computaion time was provided on the Bunch-of-Boxes (B.o.B.)
425     cluster under NSF grant DMR 00 79647. The authors acknowledge support
426     under NSF grant CHE-0134881.
427    
428     \end{kasten}
429    
430     \vspace{0.5cm}
431     \begin{kasten}
432     {\small
433     \bibliography{poster}
434     }
435     \end{kasten}
436     \end{spalte}
437     }
438     \end{lrbox}
439     \resizebox*{0.98\textwidth}{!}{%
440     \usebox{\spalten}}\hfill\mbox{}\vfill
441     \end{document}