ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
(Generate patch)

Comparing trunk/matt_papers/MWTCC03/poster.tex (file contents):
Revision 547 by mmeineke, Wed Jun 4 19:24:02 2003 UTC vs.
Revision 550 by mmeineke, Fri Jun 6 21:43:40 2003 UTC

# Line 80 | Line 80
80   %%
81   %% Load the necessary packages
82   %%
83 < \usepackage{berkeley}
83 > %%\usepackage{berkeley}
84 > \usepackage{palatino}
85   \usepackage[latin1]{inputenc}
86   \usepackage{epsf}
87   \usepackage{graphicx,psfrag,color,pstcol,pst-grad}
# Line 90 | Line 91
91   \usepackage{multicol}
92  
93   %% My Packages
94 < %%\usepackage{wrapfig}
94 > \usepackage{wrapfig}
95  
96   %%
97   %% Define the required numbers, lengths and boxes
# Line 238 | Line 239 | times in excess of 30 nanoseconds.
239  
240   }
241        \end{kasten}
242 +
243 +        
244 +  \begin{kasten}
245 +  \section{{\color{red}\underline{Introduction \& Background}}}
246 +  \label{sec:intro}
247 +
248 +  \subsection{{\color{ndblue}Motivation}}
249 +  \label{sec:motivation}
250 +
251 +
252 + Simulations of phospholipid bilayers are, by necessity, quite
253 + complex. The lipid molecules are large, and contain many
254 + atoms. Additionally, the head groups of the lipids are often
255 + zwitterions, and the large separation between charges results in a
256 + large dipole moment. Adding to the complexity are the number of water
257 + molecules needed to properly solvate the lipid bilayer, typically 25
258 + water molecules for every lipid molecule. These factors make it
259 + difficult to study certain biologically interesting phenomena that
260 + have large inherent length or time scale.
261 +
262 +  \end{kasten}
263 +
264 +  \begin{kasten}
265 +  \subsection{{\color{ndblue}Ripple Phase}}
266 +
267 + \begin{wrapfigure}{o}{60mm}
268 + \centering
269 + \includegraphics[width=40mm]{ripple.epsi}
270 + \end{wrapfigure}
271 +
272 + \mbox{}
273 + \begin{itemize}
274 + \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
275 + \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
276 + \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
277 + \end{itemize}
278 +
279 +  \label{sec:ripplePhase}
280 +
281 +   \end{kasten}
282 +
283 +
284 +  \begin{kasten}
285 + \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
286 + \begin{itemize}
287 +
288 + \item
289 + Drug Diffusion
290 +        \begin{itemize}
291 +        \item
292 +        Some drug molecules may spend appreciable amounts of time in the
293 +        membrane
294 +
295 +        \item
296 +        Long time scale dynamics are need to observe and characterize their
297 +        actions
298 +        \end{itemize}
299 +
300 + \item
301 + Bilayer Formation Dynamics
302 +        \begin{itemize}
303 +        \item
304 +        Current lipid simulations indicate\cite{Marrink01}:
305 +                \begin{itemize}
306 +                \item Aggregation can happen as quickly as 200 ps
307 +
308 +                \item Bilayers can take up to 20 ns to form completely
309 +                \end{itemize}
310 +
311 +        \end{itemize}
312 + \end{itemize}
313 +  \end{kasten}
314 +
315 +  \begin{kasten}
316 + \subsection{{\color{ndblue}System Simplfications}}
317 + \begin{itemize}
318 + \item Unified atoms with fixed bond lengths replace groups of atoms.
319 + \item Replace charge distributions with dipoles.(Eq. \ref{eq:dipole}
320 +        vs. Eq. \ref{eq:coloumb})
321 + \begin{itemize}
322 +        \item Relatively short range, $\frac{1}{r^3}$, interactions allow
323 +        the application of computational simplification algorithms,
324 +        ie. neighbor lists.
325 + \end{itemize}
326 + \end{itemize}
327 + \begin{equation}
328 + V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
329 +        \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
330 +        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
331 +        -
332 +        \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
333 +                (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
334 +                {r^{5}_{ij}} \biggr]
335 + \label{eq:dipole}
336 + \end{equation}
337 + \begin{equation}
338 + V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
339 +        {4\pi\epsilon_{0} r_{ij}}
340 + \label{eq:coloumb}
341 + \end{equation}
342 +  \end{kasten}
343  
344  
345  
# Line 246 | Line 348 | times in excess of 30 nanoseconds.
348   %%%               second column                  %%%            
349   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
350      \begin{spalte}
249    
250     \begin{kasten}
251     \section*{2 \hspace{0.1cm} {\color{ndblue}Ima second column holder}}
351  
253        hello
352  
353 +  \begin{kasten}
354 + \subsection{{\color{ndblue}Reduction in calculations}}
355 + Unified water and lipid models and decrease the number of interactions
356 + needed between two molecules.
357 +
358 + \begin{center}
359 + \includegraphics[width=50mm,angle=-90]{reduction.epsi}
360 + \end{center}
361       \end{kasten}
362          
363  
364 +  \begin{kasten}
365 + \section{{\color{red}\underline{Models}}}
366 + \label{sec:model}
367 + \subsection{{\color{ndblue}Water Model}}
368 + \label{sec:waterModel}
369  
370 + The waters in the simulation were modeled after the Soft Sticky Dipole
371 + (SSD) model of Ichiye.\cite{liu96:new_model} Where:
372  
373 + \begin{wrapfigure}[10]{o}{60mm}
374 + \begin{center}
375 + \includegraphics[width=40mm]{ssd.epsi}
376 + \end{center}
377 + \end{wrapfigure}
378 + \mbox{}
379 + \begin{itemize}
380 + \item $\sigma$ is the Lennard-Jones length parameter.
381 + \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$,
382 + \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
383 + \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively.
384 + \end{itemize}
385 +
386 + It's potential is as follows:
387 +
388 + \begin{equation}
389 + V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
390 +        + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
391 + \end{equation}
392 +
393 +
394 +  \end{kasten}
395 +
396 +
397 +
398 +
399      \end{spalte}
400   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
401   %%%               third column                   %%%            
# Line 264 | Line 403 | times in excess of 30 nanoseconds.
403      \begin{spalte}
404  
405       \begin{kasten}
406 <     \section*{3 \hspace{0.1cm} {\color{ndblue}Ima third column holder}}
407 <
406 >    
407 >     \section{{\color{ndblue}Ima third column holder}}
408 >    
409          hello
410  
411       \end{kasten}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines