ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
(Generate patch)

Comparing trunk/matt_papers/MWTCC03/poster.tex (file contents):
Revision 546 by mmeineke, Wed Jun 4 17:44:16 2003 UTC vs.
Revision 551 by mmeineke, Mon Jun 9 15:22:52 2003 UTC

# Line 42 | Line 42
42   %%        2         = 2.00     (for A1)
43   %%  
44   %%
45 < %%\def\breite{452mm}     % Gives a 4.1 foot width
46 < \def\breite{390mm}       % Special Format.
45 > \def\breite{390mm}     % Special Format.
46   \def\hoehe{319.2mm}      % Scaled by 2.82 this gives 110cm x 90cm
47   \def\anzspalten{4}
48   %%
# Line 88 | Line 87
87   \usepackage{latexsym}
88   \usepackage{calc}
89   \usepackage{multicol}
90 <
92 < %% My Packages
93 < %%\usepackage{wrapfig}
94 <
90 > \usepackage{wrapfig}
91   %%
92   %% Define the required numbers, lengths and boxes
93   %%
# Line 135 | Line 131
131  
132   \definecolor{ndgold}{rgb}{0.87,0.82,0.59}
133   \definecolor{ndgold2}{rgb}{0.96,0.91,0.63}
134 < \definecolor{ndblue}{rgb}{0,0,0.40}
134 > \definecolor{ndblue}{rgb}{0,0.1875, 0.6992}
135   \definecolor{recoilcolor}{rgb}{1,0,0}
136   \definecolor{occolor}{rgb}{0,1,0}
137   \definecolor{pink}{rgb}{0,1,1}
# Line 165 | Line 161
161    \divide\kastenwidth by \anzspalten
162    \begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill}
163  
168 %%\renewcommand{\emph}[1]{{\color{red}\textbf{#1}}}
164  
165  
166 +
167   \def\op#1{\hat{#1}}
168   \begin{document}
169   \bibliographystyle{plain}
170   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171   %%%               Background                     %%%            
172   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
173 < {\newrgbcolor{gradbegin}{0.87 0.82 0.59}%
173 > {\newrgbcolor{gradbegin}{0.0 0.01875 0.6992}%
174    \newrgbcolor{gradend}{1 1 1}%{1 1 0.5}%
175    \psframe[fillstyle=gradient,gradend=gradend,%
176    gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)}
# Line 185 | Line 181
181   \hfill
182   \psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{%
183      \hfill
184 < %%    \parbox[c]{2cm}{\includegraphics[width=6cm]{nd_mark.eps}}
189 <    \parbox[c]{2cm}{\includegraphics[width=6cm]{ssd.epsi}}
184 >    \parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}}
185      \hfill
186      \parbox[c]{0.8\linewidth}{%
187        \begin{center}
188 +        \color{ndblue}
189          \textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em]
190          \textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em]
191          {\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\
# Line 205 | Line 201
201   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202   %%%                 first column                 %%%            
203   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
208
209
204      \begin{spalte}
205       \begin{kasten}
206   %
# Line 236 | Line 230 | times in excess of 30 nanoseconds.
230  
231   }
232        \end{kasten}
233 +
234 +        
235 +  \begin{kasten}
236 +  \section{{\color{red}\underline{Introduction \& Background}}}
237 +  \label{sec:intro}
238 +
239 + %%  \subsection{{\color{ndblue}Motivation}}
240 +  \label{sec:motivation}
241 +
242 +
243 + Simulations of phospholipid bilayers are, by necessity, quite
244 + complex. The lipid molecules are large, and contain many
245 + atoms. Additionally, the head groups of the lipids are often
246 + zwitterions, and the large separation between charges results in a
247 + large dipole moment. Adding to the complexity are the number of water
248 + molecules needed to properly solvate the lipid bilayer, typically 25
249 + water molecules for every lipid molecule. These factors make it
250 + difficult to study certain biologically interesting phenomena that
251 + have large inherent length or time scale.
252 +
253 +  \end{kasten}
254 +
255 +  \begin{kasten}
256 +  \subsection{{\color{ndblue}Ripple Phase}}
257 +
258 + \begin{wrapfigure}{o}{60mm}
259 + \centering
260 + \includegraphics[width=40mm]{ripple.epsi}
261 + \end{wrapfigure}
262  
263 + \mbox{}
264 + \begin{itemize}
265 + \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
266 + \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
267 + \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
268 + \end{itemize}
269  
270 +  \label{sec:ripplePhase}
271  
272 +   \end{kasten}
273 +
274 +
275 +  \begin{kasten}
276 + \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
277 + \begin{itemize}
278 +
279 + \item
280 + Drug Diffusion
281 +        \begin{itemize}
282 +        \item
283 +        Some drug molecules may spend appreciable amounts of time in the
284 +        membrane
285 +
286 +        \item
287 +        Long time scale dynamics are need to observe and characterize their
288 +        actions
289 +        \end{itemize}
290 +
291 + \item
292 + Bilayer Formation Dynamics
293 +        \begin{itemize}
294 +        \item
295 +        Current lipid simulations indicate\cite{Marrink01}:
296 +                \begin{itemize}
297 +                \item Aggregation can happen as quickly as 200 ps
298 +
299 +                \item Bilayers can take up to 20 ns to form completely
300 +                \end{itemize}
301 +
302 +        \end{itemize}
303 + \end{itemize}
304 +  \end{kasten}
305 +
306 +  \begin{kasten}
307 + \subsection{{\color{ndblue}System Simplfications}}
308 + \begin{itemize}
309 + \item Unified atoms with fixed bond lengths replace groups of atoms.
310 + \item Replace charge distributions with dipoles.(Eq. \ref{eq:dipole}
311 +        vs. Eq. \ref{eq:coloumb})
312 + \begin{itemize}
313 +        \item Relatively short range, $\frac{1}{r^3}$, interactions allow
314 +        the application of computational simplification algorithms,
315 +        ie. neighbor lists.
316 + \end{itemize}
317 + \end{itemize}
318 + \begin{equation}
319 + V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
320 +        \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
321 +        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
322 +        -
323 +        \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
324 +                (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
325 +                {r^{5}_{ij}} \biggr]
326 + \label{eq:dipole}
327 + \end{equation}
328 + \begin{equation}
329 + V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
330 +        {4\pi\epsilon_{0} r_{ij}}
331 + \label{eq:coloumb}
332 + \end{equation}
333 +  \end{kasten}
334 +
335 +
336 +
337       \end{spalte}
338   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
339   %%%               second column                  %%%            
340   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
341      \begin{spalte}
247    
248     \begin{kasten}
249     \section*{2 \hspace{0.1cm} {\color{blue}Ima second column holder}}
342  
251        hello
343  
344 +  \begin{kasten}
345 + \subsection{{\color{ndblue}Reduction in calculations}}
346 + Unified water and lipid models and decrease the number of interactions
347 + needed between two molecules.
348 +
349 + \begin{center}
350 + \includegraphics[width=50mm,angle=-90]{reduction.epsi}
351 + \end{center}
352       \end{kasten}
353          
354  
355 +  \begin{kasten}
356 + \section{{\color{red}\underline{Models}}}
357 + \label{sec:model}
358 + \subsection{{\color{ndblue}Water Model}}
359 + \label{sec:waterModel}
360  
361 + The waters in the simulation were modeled after the Soft Sticky Dipole
362 + (SSD) model of Ichiye.\cite{liu96:new_model} Where:
363  
364 + \begin{wrapfigure}[10]{o}{60mm}
365 + \begin{center}
366 + \includegraphics[width=40mm]{ssd.epsi}
367 + \end{center}
368 + \end{wrapfigure}
369 + \mbox{}
370 + \begin{itemize}
371 + \item $\sigma$ is the Lennard-Jones length parameter.
372 + \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$,
373 + \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
374 + \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively.
375 + \end{itemize}
376 +
377 + It's potential is as follows:
378 +
379 + \begin{equation}
380 + V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
381 +        + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
382 + \end{equation}
383 +
384 +
385 +  \end{kasten}
386 +
387 +
388 +
389 +
390      \end{spalte}
391   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
392   %%%               third column                   %%%            
# Line 262 | Line 394 | times in excess of 30 nanoseconds.
394      \begin{spalte}
395  
396       \begin{kasten}
397 <     \section*{3 \hspace{0.1cm} {\color{blue}Ima third column holder}}
398 <
397 >    
398 >     \section{{\color{ndblue}Ima third column holder}}
399 >    
400          hello
401  
402       \end{kasten}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines