| 42 |
|
%% 2 = 2.00 (for A1) |
| 43 |
|
%% |
| 44 |
|
%% |
| 45 |
< |
%%\def\breite{452mm} % Gives a 4.1 foot width |
| 46 |
< |
\def\breite{390mm} % Special Format. |
| 45 |
> |
\def\breite{390mm} % Special Format. |
| 46 |
|
\def\hoehe{319.2mm} % Scaled by 2.82 this gives 110cm x 90cm |
| 47 |
|
\def\anzspalten{4} |
| 48 |
|
%% |
| 87 |
|
\usepackage{latexsym} |
| 88 |
|
\usepackage{calc} |
| 89 |
|
\usepackage{multicol} |
| 90 |
< |
|
| 92 |
< |
%% My Packages |
| 93 |
< |
%%\usepackage{wrapfig} |
| 94 |
< |
|
| 90 |
> |
\usepackage{wrapfig} |
| 91 |
|
%% |
| 92 |
|
%% Define the required numbers, lengths and boxes |
| 93 |
|
%% |
| 131 |
|
|
| 132 |
|
\definecolor{ndgold}{rgb}{0.87,0.82,0.59} |
| 133 |
|
\definecolor{ndgold2}{rgb}{0.96,0.91,0.63} |
| 134 |
< |
\definecolor{ndblue}{rgb}{0,0,0.40} |
| 134 |
> |
\definecolor{ndblue}{rgb}{0,0.1875, 0.6992} |
| 135 |
|
\definecolor{recoilcolor}{rgb}{1,0,0} |
| 136 |
|
\definecolor{occolor}{rgb}{0,1,0} |
| 137 |
|
\definecolor{pink}{rgb}{0,1,1} |
| 161 |
|
\divide\kastenwidth by \anzspalten |
| 162 |
|
\begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill} |
| 163 |
|
|
| 168 |
– |
%%\renewcommand{\emph}[1]{{\color{red}\textbf{#1}}} |
| 164 |
|
|
| 165 |
|
|
| 166 |
+ |
|
| 167 |
|
\def\op#1{\hat{#1}} |
| 168 |
|
\begin{document} |
| 169 |
|
\bibliographystyle{plain} |
| 170 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 171 |
|
%%% Background %%% |
| 172 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 173 |
< |
{\newrgbcolor{gradbegin}{0.87 0.82 0.59}% |
| 173 |
> |
{\newrgbcolor{gradbegin}{0.0 0.01875 0.6992}% |
| 174 |
|
\newrgbcolor{gradend}{1 1 1}%{1 1 0.5}% |
| 175 |
|
\psframe[fillstyle=gradient,gradend=gradend,% |
| 176 |
|
gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)} |
| 181 |
|
\hfill |
| 182 |
|
\psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{% |
| 183 |
|
\hfill |
| 184 |
< |
%% \parbox[c]{2cm}{\includegraphics[width=6cm]{nd_mark.eps}} |
| 189 |
< |
\parbox[c]{2cm}{\includegraphics[width=6cm]{ssd.epsi}} |
| 184 |
> |
\parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}} |
| 185 |
|
\hfill |
| 186 |
|
\parbox[c]{0.8\linewidth}{% |
| 187 |
|
\begin{center} |
| 188 |
+ |
\color{ndblue} |
| 189 |
|
\textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em] |
| 190 |
|
\textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em] |
| 191 |
|
{\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\ |
| 201 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 202 |
|
%%% first column %%% |
| 203 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 208 |
– |
|
| 209 |
– |
|
| 204 |
|
\begin{spalte} |
| 205 |
|
\begin{kasten} |
| 206 |
|
% |
| 230 |
|
|
| 231 |
|
} |
| 232 |
|
\end{kasten} |
| 233 |
+ |
|
| 234 |
+ |
|
| 235 |
+ |
\begin{kasten} |
| 236 |
+ |
\section{{\color{red}\underline{Introduction \& Background}}} |
| 237 |
+ |
\label{sec:intro} |
| 238 |
+ |
|
| 239 |
+ |
%% \subsection{{\color{ndblue}Motivation}} |
| 240 |
+ |
\label{sec:motivation} |
| 241 |
+ |
|
| 242 |
+ |
|
| 243 |
+ |
Simulations of phospholipid bilayers are, by necessity, quite |
| 244 |
+ |
complex. The lipid molecules are large, and contain many |
| 245 |
+ |
atoms. Additionally, the head groups of the lipids are often |
| 246 |
+ |
zwitterions, and the large separation between charges results in a |
| 247 |
+ |
large dipole moment. Adding to the complexity are the number of water |
| 248 |
+ |
molecules needed to properly solvate the lipid bilayer, typically 25 |
| 249 |
+ |
water molecules for every lipid molecule. These factors make it |
| 250 |
+ |
difficult to study certain biologically interesting phenomena that |
| 251 |
+ |
have large inherent length or time scale. |
| 252 |
+ |
|
| 253 |
+ |
\end{kasten} |
| 254 |
+ |
|
| 255 |
+ |
\begin{kasten} |
| 256 |
+ |
\subsection{{\color{ndblue}Ripple Phase}} |
| 257 |
+ |
|
| 258 |
+ |
\begin{wrapfigure}{o}{60mm} |
| 259 |
+ |
\centering |
| 260 |
+ |
\includegraphics[width=40mm]{ripple.epsi} |
| 261 |
+ |
\end{wrapfigure} |
| 262 |
|
|
| 263 |
+ |
\mbox{} |
| 264 |
+ |
\begin{itemize} |
| 265 |
+ |
\item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase. |
| 266 |
+ |
\item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87} |
| 267 |
+ |
\item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00} |
| 268 |
+ |
\end{itemize} |
| 269 |
|
|
| 270 |
+ |
\label{sec:ripplePhase} |
| 271 |
|
|
| 272 |
+ |
\end{kasten} |
| 273 |
+ |
|
| 274 |
+ |
|
| 275 |
+ |
\begin{kasten} |
| 276 |
+ |
\subsection{{\color{ndblue}Diffusion \& Formation Dynamics}} |
| 277 |
+ |
\begin{itemize} |
| 278 |
+ |
|
| 279 |
+ |
\item |
| 280 |
+ |
Drug Diffusion |
| 281 |
+ |
\begin{itemize} |
| 282 |
+ |
\item |
| 283 |
+ |
Some drug molecules may spend appreciable amounts of time in the |
| 284 |
+ |
membrane |
| 285 |
+ |
|
| 286 |
+ |
\item |
| 287 |
+ |
Long time scale dynamics are need to observe and characterize their |
| 288 |
+ |
actions |
| 289 |
+ |
\end{itemize} |
| 290 |
+ |
|
| 291 |
+ |
\item |
| 292 |
+ |
Bilayer Formation Dynamics |
| 293 |
+ |
\begin{itemize} |
| 294 |
+ |
\item |
| 295 |
+ |
Current lipid simulations indicate\cite{Marrink01}: |
| 296 |
+ |
\begin{itemize} |
| 297 |
+ |
\item Aggregation can happen as quickly as 200 ps |
| 298 |
+ |
|
| 299 |
+ |
\item Bilayers can take up to 20 ns to form completely |
| 300 |
+ |
\end{itemize} |
| 301 |
+ |
|
| 302 |
+ |
\end{itemize} |
| 303 |
+ |
\end{itemize} |
| 304 |
+ |
\end{kasten} |
| 305 |
+ |
|
| 306 |
+ |
\begin{kasten} |
| 307 |
+ |
\subsection{{\color{ndblue}System Simplfications}} |
| 308 |
+ |
\begin{itemize} |
| 309 |
+ |
\item Unified atoms with fixed bond lengths replace groups of atoms. |
| 310 |
+ |
\item Replace charge distributions with dipoles.(Eq. \ref{eq:dipole} |
| 311 |
+ |
vs. Eq. \ref{eq:coloumb}) |
| 312 |
+ |
\begin{itemize} |
| 313 |
+ |
\item Relatively short range, $\frac{1}{r^3}$, interactions allow |
| 314 |
+ |
the application of computational simplification algorithms, |
| 315 |
+ |
ie. neighbor lists. |
| 316 |
+ |
\end{itemize} |
| 317 |
+ |
\end{itemize} |
| 318 |
+ |
\begin{equation} |
| 319 |
+ |
V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
| 320 |
+ |
\boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[ |
| 321 |
+ |
\frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} |
| 322 |
+ |
- |
| 323 |
+ |
\frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) % |
| 324 |
+ |
(\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) } |
| 325 |
+ |
{r^{5}_{ij}} \biggr] |
| 326 |
+ |
\label{eq:dipole} |
| 327 |
+ |
\end{equation} |
| 328 |
+ |
\begin{equation} |
| 329 |
+ |
V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}% |
| 330 |
+ |
{4\pi\epsilon_{0} r_{ij}} |
| 331 |
+ |
\label{eq:coloumb} |
| 332 |
+ |
\end{equation} |
| 333 |
+ |
\end{kasten} |
| 334 |
+ |
|
| 335 |
+ |
|
| 336 |
+ |
|
| 337 |
|
\end{spalte} |
| 338 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 339 |
|
%%% second column %%% |
| 340 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 341 |
|
\begin{spalte} |
| 247 |
– |
|
| 248 |
– |
\begin{kasten} |
| 249 |
– |
\section*{2 \hspace{0.1cm} {\color{blue}Ima second column holder}} |
| 342 |
|
|
| 251 |
– |
hello |
| 343 |
|
|
| 344 |
+ |
\begin{kasten} |
| 345 |
+ |
\subsection{{\color{ndblue}Reduction in calculations}} |
| 346 |
+ |
Unified water and lipid models and decrease the number of interactions |
| 347 |
+ |
needed between two molecules. |
| 348 |
+ |
|
| 349 |
+ |
\begin{center} |
| 350 |
+ |
\includegraphics[width=50mm,angle=-90]{reduction.epsi} |
| 351 |
+ |
\end{center} |
| 352 |
|
\end{kasten} |
| 353 |
|
|
| 354 |
|
|
| 355 |
+ |
\begin{kasten} |
| 356 |
+ |
\section{{\color{red}\underline{Models}}} |
| 357 |
+ |
\label{sec:model} |
| 358 |
+ |
\subsection{{\color{ndblue}Water Model}} |
| 359 |
+ |
\label{sec:waterModel} |
| 360 |
|
|
| 361 |
+ |
The waters in the simulation were modeled after the Soft Sticky Dipole |
| 362 |
+ |
(SSD) model of Ichiye.\cite{liu96:new_model} Where: |
| 363 |
|
|
| 364 |
+ |
\begin{wrapfigure}[10]{o}{60mm} |
| 365 |
+ |
\begin{center} |
| 366 |
+ |
\includegraphics[width=40mm]{ssd.epsi} |
| 367 |
+ |
\end{center} |
| 368 |
+ |
\end{wrapfigure} |
| 369 |
+ |
\mbox{} |
| 370 |
+ |
\begin{itemize} |
| 371 |
+ |
\item $\sigma$ is the Lennard-Jones length parameter. |
| 372 |
+ |
\item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$, |
| 373 |
+ |
\item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$ |
| 374 |
+ |
\item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively. |
| 375 |
+ |
\end{itemize} |
| 376 |
+ |
|
| 377 |
+ |
It's potential is as follows: |
| 378 |
+ |
|
| 379 |
+ |
\begin{equation} |
| 380 |
+ |
V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 381 |
+ |
+ V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 382 |
+ |
\end{equation} |
| 383 |
+ |
|
| 384 |
+ |
|
| 385 |
+ |
\end{kasten} |
| 386 |
+ |
|
| 387 |
+ |
|
| 388 |
+ |
|
| 389 |
+ |
|
| 390 |
|
\end{spalte} |
| 391 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 392 |
|
%%% third column %%% |
| 394 |
|
\begin{spalte} |
| 395 |
|
|
| 396 |
|
\begin{kasten} |
| 397 |
< |
\section*{3 \hspace{0.1cm} {\color{blue}Ima third column holder}} |
| 398 |
< |
|
| 397 |
> |
|
| 398 |
> |
\section{{\color{ndblue}Ima third column holder}} |
| 399 |
> |
|
| 400 |
|
hello |
| 401 |
|
|
| 402 |
|
\end{kasten} |