ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
(Generate patch)

Comparing trunk/matt_papers/MWTCC03/poster.tex (file contents):
Revision 546 by mmeineke, Wed Jun 4 17:44:16 2003 UTC vs.
Revision 552 by mmeineke, Mon Jun 9 21:19:02 2003 UTC

# Line 42 | Line 42
42   %%        2         = 2.00     (for A1)
43   %%  
44   %%
45 < %%\def\breite{452mm}     % Gives a 4.1 foot width
46 < \def\breite{390mm}       % Special Format.
45 > \def\breite{390mm}     % Special Format.
46   \def\hoehe{319.2mm}      % Scaled by 2.82 this gives 110cm x 90cm
47   \def\anzspalten{4}
48   %%
# Line 88 | Line 87
87   \usepackage{latexsym}
88   \usepackage{calc}
89   \usepackage{multicol}
90 <
92 < %% My Packages
93 < %%\usepackage{wrapfig}
94 <
90 > \usepackage{wrapfig}
91   %%
92   %% Define the required numbers, lengths and boxes
93   %%
# Line 135 | Line 131
131  
132   \definecolor{ndgold}{rgb}{0.87,0.82,0.59}
133   \definecolor{ndgold2}{rgb}{0.96,0.91,0.63}
134 < \definecolor{ndblue}{rgb}{0,0,0.40}
134 > \definecolor{ndblue}{rgb}{0,0.1875, 0.6992}
135   \definecolor{recoilcolor}{rgb}{1,0,0}
136   \definecolor{occolor}{rgb}{0,1,0}
137   \definecolor{pink}{rgb}{0,1,1}
# Line 165 | Line 161
161    \divide\kastenwidth by \anzspalten
162    \begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill}
163  
168 %%\renewcommand{\emph}[1]{{\color{red}\textbf{#1}}}
164  
165  
166 +
167   \def\op#1{\hat{#1}}
168   \begin{document}
169   \bibliographystyle{plain}
170   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171   %%%               Background                     %%%            
172   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
173 < {\newrgbcolor{gradbegin}{0.87 0.82 0.59}%
173 > {\newrgbcolor{gradbegin}{0.0 0.01875 0.6992}%
174    \newrgbcolor{gradend}{1 1 1}%{1 1 0.5}%
175    \psframe[fillstyle=gradient,gradend=gradend,%
176    gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)}
# Line 185 | Line 181
181   \hfill
182   \psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{%
183      \hfill
184 < %%    \parbox[c]{2cm}{\includegraphics[width=6cm]{nd_mark.eps}}
189 <    \parbox[c]{2cm}{\includegraphics[width=6cm]{ssd.epsi}}
184 >    \parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}}
185      \hfill
186      \parbox[c]{0.8\linewidth}{%
187        \begin{center}
188 +        \color{ndblue}
189          \textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em]
190          \textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em]
191          {\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\
# Line 205 | Line 201
201   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202   %%%                 first column                 %%%            
203   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
208
209
204      \begin{spalte}
205       \begin{kasten}
206   %
# Line 230 | Line 224 | with a single point mass containing a centrally locate
224   in the tail groups to beads representing $\mbox{CH}_{2}$ and
225   $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
226   with a single point mass containing a centrally located dipole. The
227 < model was then used to simulate micelle and bilayer formation from a
228 < configuration of randomly placed phospholipids which was simulated for
229 < times in excess of 30 nanoseconds.
227 > model was then used to simulate micelle formation from a configuration
228 > of randomly placed phospholipids which was simulated for times in
229 > excess of 20 nanoseconds.
230  
231   }
232        \end{kasten}
233  
234 +        
235 +  \begin{kasten}
236 +  \section{{\color{red}\underline{Introduction \& Background}}}
237 +  \label{sec:intro}
238  
239 + %%  \subsection{{\color{ndblue}Motivation}}
240 +  \label{sec:motivation}
241  
242 +
243 + Simulations of phospholipid bilayers are, by necessity, quite
244 + complex. The lipid molecules are large, and contain many
245 + atoms. Additionally, the head groups of the lipids are often
246 + zwitterions, and the large separation between charges results in a
247 + large dipole moment. Adding to the complexity are the number of water
248 + molecules needed to properly solvate the lipid bilayer, typically 25
249 + water molecules for every lipid molecule. These factors make it
250 + difficult to study certain biologically interesting phenomena that
251 + have large inherent length or time scale.
252 +
253 +  \end{kasten}
254 +
255 +  \begin{kasten}
256 +  \subsection{{\color{ndblue}Ripple Phase}}
257 +
258 + \begin{wrapfigure}{o}{60mm}
259 + \centering
260 + \includegraphics[width=40mm]{ripple.epsi}
261 + \end{wrapfigure}
262 +
263 + \mbox{}
264 + \begin{itemize}
265 + \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
266 + \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
267 + \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
268 + \end{itemize}
269 +
270 +  \label{sec:ripplePhase}
271 +
272 +   \end{kasten}
273 +
274 +
275 +  \begin{kasten}
276 + \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
277 + \begin{itemize}
278 +
279 + \item
280 + Drug Diffusion
281 +        \begin{itemize}
282 +        \item
283 +        Some drug molecules may spend appreciable amounts of time in the
284 +        membrane
285 +
286 +        \item
287 +        Long time scale dynamics are need to observe and characterize their
288 +        actions
289 +        \end{itemize}
290 +
291 + \item
292 + Bilayer Formation Dynamics
293 +        \begin{itemize}
294 +        \item
295 +        Current lipid simulations indicate\cite{Marrink01}:
296 +                \begin{itemize}
297 +                \item Aggregation can happen as quickly as 200 ps
298 +
299 +                \item Bilayers can take up to 20 ns to form completely
300 +                \end{itemize}
301 +
302 +        \end{itemize}
303 + \end{itemize}
304 +  \end{kasten}
305 +
306 +  \begin{kasten}
307 + \subsection{{\color{ndblue}System Simplifications}}
308 + \begin{itemize}
309 + \item Unified atoms with fixed bond lengths replace groups of atoms.
310 + \item Replace charge distributions with dipoles.(Eq.~\ref{eq:dipole}
311 +        vs. Eq.~\ref{eq:coloumb})
312 + \begin{itemize}
313 +        \item Relatively short range, $\frac{1}{r^3}$, interactions allow
314 +        the application of computational simplification algorithms,
315 +        i.e. neighbor lists.
316 + \end{itemize}
317 + \end{itemize}
318 + \begin{equation}
319 + V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
320 +        \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
321 +        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
322 +        -
323 +        \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
324 +                (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
325 +                {r^{5}_{ij}} \biggr]
326 + \label{eq:dipole}
327 + \end{equation}
328 + \begin{equation}
329 + V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
330 +        {4\pi\epsilon_{0} r_{ij}}
331 + \label{eq:coloumb}
332 + \end{equation}
333 +  \end{kasten}
334 +
335 +
336 +
337       \end{spalte}
338   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
339   %%%               second column                  %%%            
340   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
341      \begin{spalte}
247    
248     \begin{kasten}
249     \section*{2 \hspace{0.1cm} {\color{blue}Ima second column holder}}
342  
251        hello
343  
344 +  \begin{kasten}
345 + \subsection{{\color{ndblue}Reduction in calculations}}
346 + Unified water and lipid models and decrease the number of interactions
347 + needed between two molecules.
348 +
349 + \begin{center}
350 + \includegraphics[width=50mm,angle=-90]{reduction.epsi}
351 + \end{center}
352       \end{kasten}
353          
354  
355 +  \begin{kasten}
356 + \section{{\color{red}\underline{Models}}}
357 + \label{sec:model}
358 + \subsection{{\color{ndblue}The Water Model}}
359 + \label{sec:waterModel}
360  
361 + The waters in the simulation were modeled after the Soft Sticky Dipole
362 + (SSD) model of Ichiye.\cite{liu96:new_model} Where:
363  
364 + \begin{wrapfigure}[10]{o}{60mm}
365 + \begin{center}
366 + \includegraphics[width=40mm]{ssd.epsi}
367 + \end{center}
368 + \end{wrapfigure}
369 + \mbox{}
370 + \begin{itemize}
371 + \item $\sigma$ is the Lennard-Jones length parameter
372 + \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$
373 + \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
374 + \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively
375 + \end{itemize}
376 +
377 + It's potential is as follows:
378 + \begin{equation}
379 + V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
380 +        + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
381 + \label{eq:ssdPot}
382 + \end{equation}
383 + Where $V_{d\!p}(r_{i\!j}$ is given in Eq.~\ref{eq:dipole}, and $V_{L\!J}(r_{i\!j})$ is the Lennard-Jones potential:
384 + \begin{equation}
385 + V_{\text{LJ}} =
386 +        4\epsilon_{ij} \biggl[
387 +        \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
388 +        - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
389 +        \biggr]
390 + \label{eq:lennardJonesPot}
391 + \end{equation}
392 +
393 +  \end{kasten}
394 +
395 +  \begin{kasten}
396 +        \subsection{{\color{ndblue}Soft Sticky Potential}}
397 +        \label{sec:SSeq}
398 +
399 +        Hydrogen bonding in the SSD model is described by the
400 +        $V_{\text{sp}}$ term in Eq.~\ref{eq:ssdPot}. Its form is as follows:
401 + \begin{equation}
402 + V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
403 +        \boldsymbol{\Omega}_{j}) =
404 +        v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
405 +                \boldsymbol{\Omega}_{j})
406 +        +
407 +        s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
408 +                \boldsymbol{\Omega}_{j})]
409 + \label{eq:spPot}
410 + \end{equation}
411 + Where $v^\circ$ scales the strength of the interaction.
412 + $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
413 + and
414 + $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
415 + are responsible for the tetrahedral potential and a correction to the
416 + tetrahedral potential respectively. They are,
417 + \begin{equation}
418 + w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
419 +        \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
420 +        + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
421 + \label{eq:spPot2}
422 + \end{equation}o
423 + and
424 + \begin{equation}
425 + \begin{split}
426 + w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
427 +        &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
428 +        &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
429 + \end{split}
430 + \label{eq:spCorrection}
431 + \end{equation}
432 + The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical
433 + coordinates of the position of molecule $j$ in the reference frame
434 + fixed on molecule $i$ with the z-axis aligned with the dipole moment.
435 + The correction
436 + $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
437 + is needed because
438 + $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
439 + vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. Finally, the
440 + potential is scaled by the switching function $s(r_{ij})$,
441 + which scales smoothly from 0 to 1.
442 + \begin{equation}
443 + s(r_{ij}) =
444 +        \begin{cases}
445 +        1&      \text{if $r_{ij} < r_{L}$}, \\
446 +        \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
447 +                - 3r_{L})}{(r_{U}-r_{L})^3}&
448 +                \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
449 +        0&      \text{if $r_{ij} \geq r_{U}$}.
450 +        \end{cases}
451 + \label{eq:spCutoff}
452 + \end{equation}
453 +
454 +  \end{kasten}
455 +
456 +
457      \end{spalte}
458   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
459   %%%               third column                   %%%            
460   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
461      \begin{spalte}
462  
463 <     \begin{kasten}
464 <     \section*{3 \hspace{0.1cm} {\color{blue}Ima third column holder}}
463 > \begin{kasten}
464 >        \subsection{{\color{ndblue}Hydrogen Bonding in SSD}}
465 >        \label{sec:hbonding}
466  
467 <        hello
467 >        The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$
468 >        recreates the hydrogen bonding network of water.
469 >        \begin{center}
470 >        \begin{minipage}{100mm}
471 >          \begin{minipage}[t]{48mm}
472 >                \begin{center}
473 >                \includegraphics[width=48mm]{iced_final.eps}\\
474 >                SSD Relaxed on a diamond lattice
475 >                \end{center}
476 >          \end{minipage}
477 >          \hspace{4mm}%
478 >          \begin{minipage}[t]{48mm}
479 >                \begin{center}
480 >                \includegraphics[width=48mm]{dipoled_final.eps}\\
481 >                Stockmayer Spheres relaxed on a diamond lattice
482 >                \end{center}
483 >          \end{minipage}
484 >        \end{minipage}
485  
486 <     \end{kasten}
486 >        \end{center}
487 >        
488  
489 +  \end{kasten}
490  
491 +
492 +  \begin{kasten}
493 +
494 +        \subsection{{\color{ndblue}The Lipid Model}}
495 +        \label{sec:lipidModel}
496 +
497 +        \begin{center}
498 +        \includegraphics[width=25mm,angle=-90]{lipidModel.epsi}
499 +        \end{center}
500 +
501 +        \begin{itemize}
502 +        \item Head group replaced by a single Lennard-Jones sphere containing a dipole at its center
503 +        \item Atoms in the tail chains modeled as unified groups of atoms
504 +        \item Tail group interaction parameters based on those of TraPPE\cite{Siepmann1998}
505 +        \end{itemize}
506 +
507 +        The total potential is given by:
508 +        \begin{equation}
509 + V_{\text{lipid}} =
510 +        \sum_{i}V_{i}^{\text{internal}}
511 +        + \sum_i \sum_{j>i} \sum_{\text{$\alpha$ in $i$}}
512 +        \sum_{\text{$\beta$ in $j$}}
513 +        V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}})
514 +        +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
515 + \end{equation}
516 + Where
517 + \begin{equation}
518 + V_{i}^{\text{internal}} =
519 +        \sum_{\text{bends}}V_{\text{bend}}(\theta_{\alpha\beta\gamma})
520 +        + \sum_{\text{torsions}}V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
521 +        + \sum_{\alpha} \sum_{\beta>\alpha}V_{\text{LJ}}(r_{\alpha \beta})
522 + \end{equation}
523 + The bend and torsion potentials were of the form:
524 + \begin{equation}
525 + V_{\text{bend}}(\theta_{\alpha\beta\gamma})
526 +        = k_{\theta}\frac{(\theta_{\alpha\beta\gamma} - \theta_0)^2}{2}
527 + \label{eq:bendPot}
528 + \end{equation}
529 + \begin{equation}
530 + V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
531 +        = c_1 [1+\cos\phi_{\alpha\beta\gamma\zeta}]
532 +        + c_2 [1 - \cos(2\phi_{\alpha\beta\gamma\zeta})]
533 +        + c_3 [1 + \cos(3\phi_{\alpha\beta\gamma\zeta})]
534 + \label{eq:torsPot}
535 + \end{equation}
536 +        
537 +
538 +  \end{kasten}
539 +
540 +  \begin{kasten}
541 +
542 +        \section{{\color{red}\underline{Initial Results}}}
543 +        \label{sec:results}
544 +        \subsection{{\color{ndblue}50 lipids randomly arranged in water}}
545 +        \label{sec:r50}
546 +
547 +        \begin{center}
548 +        \begin{minipage}{130mm}
549 +                \begin{minipage}[t]{40mm}
550 +        \begin{itemize}
551 +        \item $N_{\mbox{lipids}} = 25$
552 +        \end{itemize}
553 +                \end{minipage}
554 +                \begin{minipage}[t]{40mm}
555 +        \begin{itemize}
556 +        \item $N_{\mbox{H}_{2}\mbox{O}} = 1386$
557 +        \end{itemize}
558 +                \end{minipage}
559 +                \begin{minipage}[t]{40mm}
560 +        \begin{itemize}
561 +        \item T = 300 K
562 +        \end{itemize}
563 +                \end{minipage}
564 +        \end{minipage}
565 +        \end{center}
566 +
567 +  \end{kasten}
568 +
569 +  \begin{kasten}
570 +        
571 +        \subsection{{\color{ndblue}Simulation Snapshots}}
572 +        \label{sec:r50snapshots}
573 +        
574 +        \begin{center}
575 +        \includegraphics[width=105mm]{r50-montage.eps}
576 +        \end{center}
577 +
578 +  \end{kasten}
579 +
580 +
581      \end{spalte}
582   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
583   %%%               fourth column                  %%%            
584   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
585      \begin{spalte}
586  
587 +  \begin{kasten}
588 +        
589 +        \subsection{{\color{ndblue}Position and Angular Correlations}}
590 +        \label{sec:r50corr}
591  
592 +        \begin{center}
593 +        \begin{minipage}{110mm}
594 +                \begin{minipage}[t]{55mm}
595 +                \begin{center}
596 +                \includegraphics[width=36mm,angle=-90]{r50-HEAD-HEAD.epsi}\\
597 +                The self correlation of the head groups
598 +                \end{center}
599 +                \end{minipage}
600 +                \begin{minipage}[t]{55mm}
601 +                \begin{center}
602 +                \includegraphics[width=36mm,angle=-90]{r50-CH2-CH2.epsi}\\
603 +                The self correlation of the tail beads.
604 +                \end{center}
605 +                \end{minipage}
606 +        \end{minipage}
607 +        \end{center}
608 + \begin{equation}
609 + g(r) = \frac{V}{N_{\text{pairs}}}\langle \sum_{i} \sum_{j > i}
610 +        \delta(|\mathbf{r} - \mathbf{r}_{ij}|) \rangle
611 + \label{eq:gofr}
612 + \end{equation}
613 + \begin{equation}
614 + g_{\gamma}(r) = \langle \sum_i \sum_{j>i}
615 +        (\cos \gamma_{ij}) \delta(| \mathbf{r} - \mathbf{r}_{ij}|) \rangle
616 + \label{eq:gammaofr}
617 + \end{equation}
618  
619 +  \end{kasten}
620  
621  
622 +  \begin{kasten}
623 +
624 +        \subsection{{\color{red}\underline{Discussion}}}
625 +        \label{sec:discussion}
626 +        
627 +        The initial results show much promise for the model. The
628 +        system of 50 lipids was able to form micelles quickly, however
629 +        bilayer formation was not seen on the time scale of the
630 +        current simulation. Current simulations are exploring the
631 +        phase space of the model when the tail beads are larger than
632 +        the head group. This should help to drive the system toward a
633 +        bilayer rather than a micelle. Work is also being done on the
634 +        simulation engine to allow for the box size of the system to
635 +        be adjustable in all three dimensions to allow for constant
636 +        pressure.
637 +
638 +  \end{kasten}
639 +
640 +
641       \begin{kasten}
642          \begin{center}  
643          {\large{\color{red} \underline{Acknowledgments}}}
# Line 287 | Line 646 | engine. MAM would also like to extend a special thank
646   The authors would like to acknowledge Charles Vardeman, Christopher
647   Fennell, and Teng lin for their contributions to the simulation
648   engine. MAM would also like to extend a special thank you to Charles
649 < Vardeman for his help with the TeX formatting of this
650 < poster. Computaion time was provided on the Bunch-of-Boxes (B.o.B.)
649 > Vardeman for his help with the \TeX formatting of this
650 > poster. Computation time was provided on the Notre Dame Bunch-of-Boxes (B.o.B.)
651   cluster under NSF grant DMR 00 79647. The authors acknowledge support
652   under NSF grant CHE-0134881.
653  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines