ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
(Generate patch)

Comparing trunk/matt_papers/MWTCC03/poster.tex (file contents):
Revision 551 by mmeineke, Mon Jun 9 15:22:52 2003 UTC vs.
Revision 553 by mmeineke, Tue Jun 10 16:04:33 2003 UTC

# Line 166 | Line 166
166  
167   \def\op#1{\hat{#1}}
168   \begin{document}
169 < \bibliographystyle{plain}
169 > \bibliographystyle{unsrt}
170   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171   %%%               Background                     %%%            
172   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Line 215 | Line 215 | A mesoscale model for phospholipids has been developed
215   {\color{ndblue}
216  
217   A mesoscale model for phospholipids has been developed for molecular
218 < dynamics simulations of lipid bilayers. The model makes several
218 > dynamics simulations of phospholipid phase transitions. The model makes several
219   simplifications to both the water and the phospholipids to reduce the
220   computational cost of each force evaluation. The water was represented
221   by the soft sticky dipole model of Ichiye \emph{et
# Line 224 | Line 224 | with a single point mass containing a centrally locate
224   in the tail groups to beads representing $\mbox{CH}_{2}$ and
225   $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
226   with a single point mass containing a centrally located dipole. The
227 < model was then used to simulate micelle and bilayer formation from a
228 < configuration of randomly placed phospholipids which was simulated for
229 < times in excess of 30 nanoseconds.
227 > model was then used to simulate micelle formation from a configuration
228 > of randomly placed phospholipids which was simulated for times in
229 > excess of 20 nanoseconds.
230  
231   }
232        \end{kasten}
# Line 240 | Line 240 | times in excess of 30 nanoseconds.
240    \label{sec:motivation}
241  
242  
243 < Simulations of phospholipid bilayers are, by necessity, quite
243 > Simulations of phospholipid phases are, by necessity, quite
244   complex. The lipid molecules are large, and contain many
245   atoms. Additionally, the head groups of the lipids are often
246   zwitterions, and the large separation between charges results in a
# Line 304 | Line 304 | Bilayer Formation Dynamics
304    \end{kasten}
305  
306    \begin{kasten}
307 < \subsection{{\color{ndblue}System Simplfications}}
307 > \subsection{{\color{ndblue}Our Simplifications}}
308   \begin{itemize}
309   \item Unified atoms with fixed bond lengths replace groups of atoms.
310 < \item Replace charge distributions with dipoles.(Eq. \ref{eq:dipole}
311 <        vs. Eq. \ref{eq:coloumb})
310 > \item Charge distributions are replaced with dipoles.
311   \begin{itemize}
312          \item Relatively short range, $\frac{1}{r^3}$, interactions allow
313 <        the application of computational simplification algorithms,
315 <        ie. neighbor lists.
313 >        the application of neighbor lists.
314   \end{itemize}
315   \end{itemize}
316   \begin{equation}
# Line 325 | Line 323 | V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}
323                  {r^{5}_{ij}} \biggr]
324   \label{eq:dipole}
325   \end{equation}
328 \begin{equation}
329 V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
330        {4\pi\epsilon_{0} r_{ij}}
331 \label{eq:coloumb}
332 \end{equation}
326    \end{kasten}
327  
328  
# Line 355 | Line 348 | needed between two molecules.
348    \begin{kasten}
349   \section{{\color{red}\underline{Models}}}
350   \label{sec:model}
351 < \subsection{{\color{ndblue}Water Model}}
351 > \subsection{{\color{ndblue}The Water Model}}
352   \label{sec:waterModel}
353  
354   The waters in the simulation were modeled after the Soft Sticky Dipole
# Line 368 | Line 361 | The waters in the simulation were modeled after the So
361   \end{wrapfigure}
362   \mbox{}
363   \begin{itemize}
364 < \item $\sigma$ is the Lennard-Jones length parameter.
365 < \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$,
364 > \item $\sigma$ is the Lennard-Jones length parameter
365 > \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$
366   \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
367 < \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively.
367 > \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively
368   \end{itemize}
369  
370   It's potential is as follows:
378
371   \begin{equation}
372   V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
373          + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
374 + \label{eq:ssdPot}
375   \end{equation}
376 <
384 <
376 > Where $V_{d\!p}(r_{i\!j})$ is given in Eq.~\ref{eq:dipole}, and $V_{L\!J}(r_{i\!j})$ is the Lennard-Jones potential.
377    \end{kasten}
378  
379 +  \begin{kasten}
380 +        \subsection{{\color{ndblue}Soft Sticky Potential}}
381 +        \label{sec:SSeq}
382 +
383 +        Hydrogen bonding in the SSD model is described by the
384 +        $V_{\text{sp}}$ term in Eq.~\ref{eq:ssdPot}. Its form is as follows:
385 + \begin{equation}
386 + V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
387 +        \boldsymbol{\Omega}_{j}) =
388 +        v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
389 +                \boldsymbol{\Omega}_{j})
390 +        +
391 +        s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
392 +                \boldsymbol{\Omega}_{j})]
393 + \label{eq:spPot}
394 + \end{equation}
395 + Where $v^\circ$ scales the strength of the interaction.
396 + $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
397 + and
398 + $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
399 + are responsible for the tetrahedral potential and a correction to the
400 + tetrahedral potential respectively. They are,
401 + \begin{equation}
402 + w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
403 +        \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
404 +        + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
405 + \label{eq:spPot2}
406 + \end{equation}
407 + and
408 + \begin{equation}
409 + \begin{split}
410 + w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
411 +        &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
412 +        &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
413 + \end{split}
414 + \label{eq:spCorrection}
415 + \end{equation}
416 + The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical
417 + coordinates of the position of molecule $j$ in the reference frame
418 + fixed on molecule $i$ with the z-axis aligned with the dipole moment.
419 + The correction
420 + $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
421 + is needed because
422 + $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
423 + vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. Finally, the
424 + potential is scaled by the switching function $s(r_{ij})$,
425 + which scales smoothly from 0 to 1.
426 + \begin{equation}
427 + s(r_{ij}) =
428 +        \begin{cases}
429 +        1&      \text{if $r_{ij} < r_{L}$}, \\
430 +        \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
431 +                - 3r_{L})}{(r_{U}-r_{L})^3}&
432 +                \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
433 +        0&      \text{if $r_{ij} \geq r_{U}$}.
434 +        \end{cases}
435 + \label{eq:spCutoff}
436 + \end{equation}
437  
438 +  \end{kasten}
439  
440  
441      \end{spalte}
# Line 393 | Line 444 | V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\
444   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
445      \begin{spalte}
446  
447 <     \begin{kasten}
448 <    
449 <     \section{{\color{ndblue}Ima third column holder}}
399 <    
400 <        hello
447 > \begin{kasten}
448 >        \subsection{{\color{ndblue}Hydrogen Bonding in SSD}}
449 >        \label{sec:hbonding}
450  
451 <     \end{kasten}
451 >        The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$
452 >        recreates the hydrogen bonding network of water.
453 >        \begin{center}
454 >        \begin{minipage}{100mm}
455 >          \begin{minipage}[t]{48mm}
456 >                \begin{center}
457 >                \includegraphics[width=48mm]{iced_final.eps}\\
458 >                SSD Relaxed on a diamond lattice
459 >                \end{center}
460 >          \end{minipage}
461 >          \hspace{4mm}%
462 >          \begin{minipage}[t]{48mm}
463 >                \begin{center}
464 >                \includegraphics[width=48mm]{dipoled_final.eps}\\
465 >                Stockmayer Spheres relaxed on a diamond lattice
466 >                \end{center}
467 >          \end{minipage}
468 >        \end{minipage}
469  
470 +        \end{center}
471 +        
472  
473 +  \end{kasten}
474 +
475 +
476 +  \begin{kasten}
477 +
478 +        \subsection{{\color{ndblue}The Lipid Model}}
479 +        \label{sec:lipidModel}
480 +
481 +        \begin{center}
482 +        \includegraphics[width=25mm,angle=-90]{lipidModel.epsi}
483 +        \end{center}
484 +
485 +        \begin{itemize}
486 +        \item PC \& PE head groups are replaced by a Lennard-Jones sphere containing a dipole at its center
487 +        \item Atoms in the tail chains modeled as unified groups of atoms
488 +        \item Tail group interaction parameters based on those of TraPPE\cite{Siepmann1998}
489 +        \end{itemize}
490 +
491 +        The total potential is given by:
492 +        \begin{equation}
493 + V_{\text{lipid}} =
494 +        \sum_{i}V_{i}^{\text{internal}}
495 +        + \sum_i \sum_{j>i} \sum_{\text{$\alpha$ in $i$}}
496 +        \sum_{\text{$\beta$ in $j$}}
497 +        V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}})
498 +        +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
499 + \end{equation}
500 + Where
501 + \begin{equation}
502 + V_{i}^{\text{internal}} =
503 +        \sum_{\text{bends}}V_{\text{bend}}(\theta_{\alpha\beta\gamma})
504 +        + \sum_{\text{torsions}}V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
505 +        + \sum_{\alpha} \sum_{\beta>\alpha}V_{\text{LJ}}(r_{\alpha \beta})
506 + \end{equation}
507 + The bend and torsion potentials were of the form:
508 + \begin{equation}
509 + V_{\text{bend}}(\theta_{\alpha\beta\gamma})
510 +        = k_{\theta}\frac{(\theta_{\alpha\beta\gamma} - \theta_0)^2}{2}
511 + \label{eq:bendPot}
512 + \end{equation}
513 + \begin{equation}
514 + V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
515 +        = c_1 [1+\cos\phi_{\alpha\beta\gamma\zeta}]
516 +        + c_2 [1 - \cos(2\phi_{\alpha\beta\gamma\zeta})]
517 +        + c_3 [1 + \cos(3\phi_{\alpha\beta\gamma\zeta})]
518 + \label{eq:torsPot}
519 + \end{equation}
520 +        
521 +
522 +  \end{kasten}
523 +
524 +  \begin{kasten}
525 +
526 +        \section{{\color{red}\underline{Initial Results}}}
527 +        \label{sec:results}    
528 +        \subsection{{\color{ndblue}Simulation Snapshots:50 lipids in a sea of 1384 waters}}
529 +        \label{sec:r50snapshots}
530 +        
531 +        \begin{center}
532 +        \includegraphics[width=105mm]{r50-montage.eps}
533 +        \end{center}
534 +
535 +  \end{kasten}
536 +
537 +
538      \end{spalte}
539   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
540   %%%               fourth column                  %%%            
541   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
542      \begin{spalte}
543  
544 +  \begin{kasten}
545 +        
546 +        \subsection{{\color{ndblue}Position and Angular Correlations}}
547 +        \label{sec:r50corr}
548  
549 +        \begin{center}
550 +        \begin{minipage}{110mm}
551 +                \begin{minipage}[t]{55mm}
552 +                \begin{center}
553 +                \includegraphics[width=36mm,angle=-90]{r50-HEAD-HEAD.epsi}\\
554 +                The self correlation of the head groups
555 +                \end{center}
556 +                \end{minipage}
557 +                \begin{minipage}[t]{55mm}
558 +                \begin{center}
559 +                \includegraphics[width=36mm,angle=-90]{r50-CH2-CH2.epsi}\\
560 +                The self correlation of the tail beads.
561 +                \end{center}
562 +                \end{minipage}
563 +        \end{minipage}
564 +        \end{center}
565 + \begin{equation}
566 + g(r) = \frac{V}{N_{\text{pairs}}}\langle \sum_{i} \sum_{j > i}
567 +        \delta(|\mathbf{r} - \mathbf{r}_{ij}|) \rangle
568 + \label{eq:gofr}
569 + \end{equation}
570 + \begin{equation}
571 + g_{\gamma}(r) = \langle \sum_i \sum_{j>i}
572 +        (\cos \gamma_{ij}) \delta(| \mathbf{r} - \mathbf{r}_{ij}|) \rangle
573 + \label{eq:gammaofr}
574 + \end{equation}
575  
576 +  \end{kasten}
577  
578  
579 +  \begin{kasten}
580 +
581 +        \subsection{{\color{red}\underline{Discussion}}}
582 +        \label{sec:discussion}
583 +        
584 +        The initial results show much promise for the model. The
585 +        system of 50 lipids was able to form micelles quickly, however
586 +        bilayer formation was not seen on the time scale of the
587 +        current simulation. Current simulations are exploring the
588 +        parameter space of the model when the tail beads are larger than
589 +        the head group. This should help to drive the system toward a
590 +        bilayer rather than a micelle. Work is also being done on the
591 +        simulation engine to allow for the box size of the system to
592 +        be adjustable in all three dimensions to allow for constant
593 +        pressure.
594 +
595 +  \end{kasten}
596 +
597 +
598       \begin{kasten}
599          \begin{center}  
600          {\large{\color{red} \underline{Acknowledgments}}}
# Line 420 | Line 603 | engine. MAM would also like to extend a special thank
603   The authors would like to acknowledge Charles Vardeman, Christopher
604   Fennell, and Teng lin for their contributions to the simulation
605   engine. MAM would also like to extend a special thank you to Charles
606 < Vardeman for his help with the TeX formatting of this
607 < poster. Computaion time was provided on the Bunch-of-Boxes (B.o.B.)
606 > Vardeman for his help with the \TeX formatting of this
607 > poster. Computation time was provided on the Notre Dame Bunch-of-Boxes (B.o.B.)
608   cluster under NSF grant DMR 00 79647. The authors acknowledge support
609   under NSF grant CHE-0134881.
610  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines