ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
(Generate patch)

Comparing trunk/matt_papers/MWTCC03/poster.tex (file contents):
Revision 552 by mmeineke, Mon Jun 9 21:19:02 2003 UTC vs.
Revision 553 by mmeineke, Tue Jun 10 16:04:33 2003 UTC

# Line 166 | Line 166
166  
167   \def\op#1{\hat{#1}}
168   \begin{document}
169 < \bibliographystyle{plain}
169 > \bibliographystyle{unsrt}
170   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171   %%%               Background                     %%%            
172   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Line 215 | Line 215 | A mesoscale model for phospholipids has been developed
215   {\color{ndblue}
216  
217   A mesoscale model for phospholipids has been developed for molecular
218 < dynamics simulations of lipid bilayers. The model makes several
218 > dynamics simulations of phospholipid phase transitions. The model makes several
219   simplifications to both the water and the phospholipids to reduce the
220   computational cost of each force evaluation. The water was represented
221   by the soft sticky dipole model of Ichiye \emph{et
# Line 240 | Line 240 | excess of 20 nanoseconds.
240    \label{sec:motivation}
241  
242  
243 < Simulations of phospholipid bilayers are, by necessity, quite
243 > Simulations of phospholipid phases are, by necessity, quite
244   complex. The lipid molecules are large, and contain many
245   atoms. Additionally, the head groups of the lipids are often
246   zwitterions, and the large separation between charges results in a
# Line 304 | Line 304 | Bilayer Formation Dynamics
304    \end{kasten}
305  
306    \begin{kasten}
307 < \subsection{{\color{ndblue}System Simplifications}}
307 > \subsection{{\color{ndblue}Our Simplifications}}
308   \begin{itemize}
309   \item Unified atoms with fixed bond lengths replace groups of atoms.
310 < \item Replace charge distributions with dipoles.(Eq.~\ref{eq:dipole}
311 <        vs. Eq.~\ref{eq:coloumb})
310 > \item Charge distributions are replaced with dipoles.
311   \begin{itemize}
312          \item Relatively short range, $\frac{1}{r^3}$, interactions allow
313 <        the application of computational simplification algorithms,
315 <        i.e. neighbor lists.
313 >        the application of neighbor lists.
314   \end{itemize}
315   \end{itemize}
316   \begin{equation}
# Line 325 | Line 323 | V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}
323                  {r^{5}_{ij}} \biggr]
324   \label{eq:dipole}
325   \end{equation}
328 \begin{equation}
329 V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
330        {4\pi\epsilon_{0} r_{ij}}
331 \label{eq:coloumb}
332 \end{equation}
326    \end{kasten}
327  
328  
# Line 380 | Line 373 | V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\
373          + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
374   \label{eq:ssdPot}
375   \end{equation}
376 < Where $V_{d\!p}(r_{i\!j}$ is given in Eq.~\ref{eq:dipole}, and $V_{L\!J}(r_{i\!j})$ is the Lennard-Jones potential:
384 < \begin{equation}
385 < V_{\text{LJ}} =
386 <        4\epsilon_{ij} \biggl[
387 <        \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
388 <        - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
389 <        \biggr]
390 < \label{eq:lennardJonesPot}
391 < \end{equation}
392 <
376 > Where $V_{d\!p}(r_{i\!j})$ is given in Eq.~\ref{eq:dipole}, and $V_{L\!J}(r_{i\!j})$ is the Lennard-Jones potential.
377    \end{kasten}
378  
379    \begin{kasten}
# Line 419 | Line 403 | w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsy
403          \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
404          + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
405   \label{eq:spPot2}
406 < \end{equation}o
406 > \end{equation}
407   and
408   \begin{equation}
409   \begin{split}
# Line 499 | Line 483 | s(r_{ij}) =
483          \end{center}
484  
485          \begin{itemize}
486 <        \item Head group replaced by a single Lennard-Jones sphere containing a dipole at its center
486 >        \item PC \& PE head groups are replaced by a Lennard-Jones sphere containing a dipole at its center
487          \item Atoms in the tail chains modeled as unified groups of atoms
488          \item Tail group interaction parameters based on those of TraPPE\cite{Siepmann1998}
489          \end{itemize}
# Line 540 | Line 524 | V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
524    \begin{kasten}
525  
526          \section{{\color{red}\underline{Initial Results}}}
527 <        \label{sec:results}
528 <        \subsection{{\color{ndblue}50 lipids randomly arranged in water}}
545 <        \label{sec:r50}
546 <
547 <        \begin{center}
548 <        \begin{minipage}{130mm}
549 <                \begin{minipage}[t]{40mm}
550 <        \begin{itemize}
551 <        \item $N_{\mbox{lipids}} = 25$
552 <        \end{itemize}
553 <                \end{minipage}
554 <                \begin{minipage}[t]{40mm}
555 <        \begin{itemize}
556 <        \item $N_{\mbox{H}_{2}\mbox{O}} = 1386$
557 <        \end{itemize}
558 <                \end{minipage}
559 <                \begin{minipage}[t]{40mm}
560 <        \begin{itemize}
561 <        \item T = 300 K
562 <        \end{itemize}
563 <                \end{minipage}
564 <        \end{minipage}
565 <        \end{center}
566 <
567 <  \end{kasten}
568 <
569 <  \begin{kasten}
570 <        
571 <        \subsection{{\color{ndblue}Simulation Snapshots}}
527 >        \label{sec:results}    
528 >        \subsection{{\color{ndblue}Simulation Snapshots:50 lipids in a sea of 1384 waters}}
529          \label{sec:r50snapshots}
530          
531          \begin{center}
# Line 628 | Line 585 | g_{\gamma}(r) = \langle \sum_i \sum_{j>i}
585          system of 50 lipids was able to form micelles quickly, however
586          bilayer formation was not seen on the time scale of the
587          current simulation. Current simulations are exploring the
588 <        phase space of the model when the tail beads are larger than
588 >        parameter space of the model when the tail beads are larger than
589          the head group. This should help to drive the system toward a
590          bilayer rather than a micelle. Work is also being done on the
591          simulation engine to allow for the box size of the system to

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines