ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_paper/canidacy_paper.tex
Revision: 100
Committed: Tue Aug 27 01:28:22 2002 UTC (21 years, 10 months ago) by mmeineke
Content type: application/x-tex
File size: 9347 byte(s)
Log Message:
did a little more typing

File Contents

# User Rev Content
1 mmeineke 95 \documentclass[11pt]{article}
2    
3     \usepackage{graphicx}
4 mmeineke 98 \usepackage{floatflt}
5 mmeineke 95 \usepackage{amsmath}
6     \usepackage{amssymb}
7     \usepackage[ref]{overcite}
8    
9    
10    
11     \pagestyle{plain}
12     \pagenumbering{arabic}
13     \oddsidemargin 0.0cm \evensidemargin 0.0cm
14     \topmargin -21pt \headsep 10pt
15     \textheight 9.0in \textwidth 6.5in
16     \brokenpenalty=10000
17     \renewcommand{\baselinestretch}{1.2}
18     \renewcommand\citemid{\ } % no comma in optional reference note
19    
20    
21     \begin{document}
22    
23 mmeineke 98
24 mmeineke 95 \title{A Mesoscale Model for Phospholipid Simulations}
25    
26     \author{Matthew A. Meineke\\
27     Department of Chemistry and Biochemistry\\
28     University of Notre Dame\\
29     Notre Dame, Indiana 46556}
30    
31     \date{\today}
32     \maketitle
33    
34     \section{Background and Research Goals}
35    
36     \section{Methodology}
37    
38 mmeineke 96 \subsection{Length and Time Scale Simplifications}
39 mmeineke 95
40     The length scale simplifications are aimed at increaseing the number
41     of molecules simulated without drastically increasing the
42     computational cost of the system. This is done by a combination of
43     substituting less expensive interactions for expensive ones and
44     decreasing the number of interaction sites per molecule. Namely,
45     charge distributions are replaced with dipoles, and unified atoms are
46     used in place of water and phospholipid head groups.
47    
48     The replacement of charge distributions with dipoles allows us to
49     replace an interaction that has a relatively long range, $\frac{1}{r}$
50     for the charge charge potential, with that of a relitively short
51     range, $\frac{1}{r^{3}}$ for dipole - dipole potentials
52     (Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us
53     to use computaional simplifications algorithms such as Verlet neighbor
54     lists,\cite{allen87:csl} which gives computaional scaling by $N$. This
55     is in comparison to the Ewald sum\cite{leach01:mm} needed to compute
56     the charge - charge interactions which scales at best by $N
57     \ln N$.
58    
59     \begin{equation}
60     V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
61     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
62     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
63     -
64     \frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) %
65     (\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr]
66     \label{eq:dipolePot}
67     \end{equation}
68    
69     \begin{equation}
70     V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
71     {4\pi\epsilon_{0} r_{ij}}
72     \label{eq:chargePot}
73     \end{equation}
74    
75     The second step taken to simplify the number of calculationsis to
76     incorporate unified models for groups of atoms. In the case of water,
77     we use the soft sticky dipole (SSD) model developed by
78     Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a
79     unified head atom with a dipole will replace the atoms in the head
80     group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will
81     replace the alkanes in the tails (Section~\ref{sec:lipidModel}).
82    
83 mmeineke 96 The time scale simplifications are taken so that the simulation can
84     take long time steps. By incresing the time steps taken by the
85     simulation, we are able to integrate the simulation trajectory with
86     fewer calculations. However, care must be taken to conserve the energy
87     of the simulation. This is a constraint placed upon the system by
88     simulating in the microcanonical ensemble. In practice, this means
89     taking steps small enough to resolve all motion in the system without
90     accidently moving an object too far along a repulsive energy surface
91     before it feels the affect of the surface.
92 mmeineke 95
93 mmeineke 96 In our simulation we have chosen to constrain all bonds to be of fixed
94     length. This means the bonds are no longer allowed to vibrate about
95     their equilibrium positions, typically the fastest periodical motion
96     in a dynamics simulation. By taking this action, we are able to take
97     time steps of 3 fs while still maintaining constant energy. This is in
98     contrast to the 1 fs time step typically needed to conserve energy when
99 mmeineke 97 bonds lengths are allowed to oscillate.
100 mmeineke 95
101     \subsection{The Soft Sticky Water Model}
102     \label{sec:ssdModel}
103    
104 mmeineke 98 \begin{floatingfigure}{55mm}
105     \includegraphics[width=45mm]{ssd.epsi}
106     \caption{The SSD model with the oxygen and hydrogen atoms drawn in for reference. \vspace{5mm}}
107     % The dipole magnitude is 2.35 D and the Lennard-Jones parameters are $\sigma = 3.051 \mbox{\AA}$ and $\epsilon = 0.152$ kcal/mol.}
108     \label{fig:ssdModel}
109     \end{floatingfigure}
110 mmeineke 96
111 mmeineke 98 The water model used in our simulations is a modified soft Stockmayer
112     sphere model. Like the soft Stockmayer sphere, the SSD
113     model\cite{Liu96} consists of a Lennard-Jones interaction site and a
114     dipole both located at the water's center of mass (Figure
115     \ref{fig:ssdModel}). However, the SSD model extends this by adding a
116     tetrahedral potential to correct for hydrogen bonding.
117    
118     This SSD water's motion is then governed by the following potential:
119 mmeineke 96 \begin{equation}
120     V_{\text{ssd}} = V_{\text{LJ}}(r_{i\!j}) + V_{\text{dp}}(\mathbf{r}_{i\!j},
121     \boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
122     + V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
123     \boldsymbol{\Omega}_{j})
124 mmeineke 98 \label{eq:ssdTotPot}
125 mmeineke 96 \end{equation}
126 mmeineke 98 $V_{\text{LJ}}$ is the Lennard-Jones potential with $\sigma_{\text{w}}
127     = 3.051 \mbox{ \AA}$ and $\epsilon_{\text{w}} = 0.152\text{
128     kcal/mol}$. $V_{\text{dp}}$ is the dipole potential with
129     $|\mu_{\text{w}}| = 2.35\text{ D}$.
130 mmeineke 96
131 mmeineke 98 The hydrogen bonding of the model is governed by the $V_{\text{sp}}$ term of the potentail. Its form is as follows:
132 mmeineke 96 \begin{equation}
133     V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
134     \boldsymbol{\Omega}_{j}) =
135     v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
136     \boldsymbol{\Omega}_{j})
137     +
138     s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
139     \boldsymbol{\Omega}_{j})]
140 mmeineke 98 \label{eq:spPot}
141 mmeineke 96 \end{equation}
142 mmeineke 98 Where $v^\circ$ is responsible for scaling the strength of the
143     interaction.
144     $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
145     and
146     $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
147     are responsible for the tetrahedral potential and a correction to the
148     tetrahedral potential respectively. They are,
149 mmeineke 96 \begin{equation}
150     w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
151     \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
152     + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
153 mmeineke 98 \label{eq:apPot2}
154 mmeineke 96 \end{equation}
155 mmeineke 98 and
156 mmeineke 96 \begin{equation}
157     \begin{split}
158 mmeineke 98 w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
159     &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
160     &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
161 mmeineke 96 \end{split}
162 mmeineke 98 \label{eq:spCorrection}
163 mmeineke 96 \end{equation}
164 mmeineke 98 The correction
165     $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
166     is needed because
167     $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
168     vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical polar coordinates of the position of sphere $j$ in the reference frame fixed on sphere $i$ with the z-axis alligned with the dipole moment.
169 mmeineke 96
170 mmeineke 98 Finaly, the sticky potentail is scaled by a cutoff function, $s(r_{ij})$ that scales smoothly between 0 and 1. It is represented by:
171 mmeineke 96 \begin{equation}
172     s(r_{ij}) =
173     \begin{cases}
174     1& \text{if $r_{ij} < r_{L}$}, \\
175     \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
176     - 3r_{L})}{(r_{U}-r_{L})^3}&
177     \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
178     0& \text{if $r_{ij} \geq r_{U}$}.
179     \end{cases}
180 mmeineke 98 \label{eq:spCutoff}
181 mmeineke 96 \end{equation}
182    
183 mmeineke 98
184 mmeineke 95 \subsection{The Phospholipid Model}
185     \label{sec:lipidModel}
186    
187 mmeineke 99 \begin{floatingfigure}{90mm}
188     \includegraphics[angle=-90,width=80mm]{lipidModel.epsi}
189     \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length. \vspace{5mm}}
190     \label{fig:lipidModel}
191     \end{floatingfigure}
192 mmeineke 95
193 mmeineke 99 The lipid molecules in our simulations are unified atom models. Figure
194     \ref{fig:lipidModel} shows a template drawing for one of our
195     lipids. The Head group of the phospholipid is replaced by a single
196     Lennard-Jones sphere with a freely oriented dipole placed at it's
197     center. The magnitude of it's dipole moment is 20.6 D. The tail atoms
198     are unifed $\text{CH}_2$ and $\text{CH}_3$ atoms and are also modeled
199     as Lennard-Jones spheres. The total potential for the lipid is
200     represented by Equation \ref{eq:lipidModelPot}.
201    
202     \begin{equation}
203     V_{\mbox{lipid}} = \overbrace{%
204     V_{\text{bend}}(\theta_{ijk}) +%
205     V_{\text{tors.}}(\phi_{ijkl})}^{bonded}
206     + \overbrace{%
207     V_{\text{LJ}}(r_{i\!j}) +
208     V_{\text{dp}}(r_{i\!j},\Omega_{i},\Omega_{j})%
209     }^{non-bonded}
210     \label{eq:lipidModelPot}
211     \end{equation}
212    
213     The non bonded interactions, $V_{\text{LJ}}$ and $V_{\text{dp}}$, are
214     the Lennard-Jones and dipole-dipole interactions respectively. For the
215     non-bonded potentials, only the bend and the torsional potentials are
216     calculated. The bond potential is not calculated, and the bond lengths
217     are constrained via RATTLE.\cite{leach01:mm} The bend potential is of
218     the form:
219     \begin{equation}
220     V_{\text{bend}}(\theta_{ijk}) = k_{\theta}\frac{(\theta_{ijk} - \theta_0)^2}{2}
221     \label{eq:bendPot}
222     \end{equation}
223 mmeineke 100 Where $k_{\theta}$ sets the stiffness of the bend potential, and $\theta_0$
224     sets the equilibrium bend angle. The torsion potential was given by:
225     \begin{equation}
226     V_{\text{tors.}}(\phi_{ijkl}= \cos(\phi_{ijkl})
227     \label{eq:torsPot}
228     \end{equation}
229 mmeineke 99
230 mmeineke 100 \pagebreak
231     \bibliographystyle{achemso}
232 mmeineke 99 \bibliography{canidacy_paper} \end{document}