ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_paper/canidacy_paper.tex
Revision: 95
Committed: Wed Aug 21 21:25:08 2002 UTC (22 years ago) by mmeineke
Content type: application/x-tex
File size: 2992 byte(s)
Log Message:
just writing, not much editing yet

File Contents

# User Rev Content
1 mmeineke 95 \documentclass[11pt]{article}
2    
3     \usepackage{graphicx}
4     \usepackage{amsmath}
5     \usepackage{amssymb}
6     \usepackage[ref]{overcite}
7    
8    
9    
10     \pagestyle{plain}
11     \pagenumbering{arabic}
12     \oddsidemargin 0.0cm \evensidemargin 0.0cm
13     \topmargin -21pt \headsep 10pt
14     \textheight 9.0in \textwidth 6.5in
15     \brokenpenalty=10000
16     \renewcommand{\baselinestretch}{1.2}
17     \renewcommand\citemid{\ } % no comma in optional reference note
18    
19    
20     \begin{document}
21    
22     \title{A Mesoscale Model for Phospholipid Simulations}
23    
24     \author{Matthew A. Meineke\\
25     Department of Chemistry and Biochemistry\\
26     University of Notre Dame\\
27     Notre Dame, Indiana 46556}
28    
29     \date{\today}
30     \maketitle
31    
32     \section{Background and Research Goals}
33    
34     \section{Methodology}
35    
36     \subsection{Length Scale Simplifications}
37    
38     The length scale simplifications are aimed at increaseing the number
39     of molecules simulated without drastically increasing the
40     computational cost of the system. This is done by a combination of
41     substituting less expensive interactions for expensive ones and
42     decreasing the number of interaction sites per molecule. Namely,
43     charge distributions are replaced with dipoles, and unified atoms are
44     used in place of water and phospholipid head groups.
45    
46     The replacement of charge distributions with dipoles allows us to
47     replace an interaction that has a relatively long range, $\frac{1}{r}$
48     for the charge charge potential, with that of a relitively short
49     range, $\frac{1}{r^{3}}$ for dipole - dipole potentials
50     (Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us
51     to use computaional simplifications algorithms such as Verlet neighbor
52     lists,\cite{allen87:csl} which gives computaional scaling by $N$. This
53     is in comparison to the Ewald sum\cite{leach01:mm} needed to compute
54     the charge - charge interactions which scales at best by $N
55     \ln N$.
56    
57     \begin{equation}
58     V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
59     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
60     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
61     -
62     \frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) %
63     (\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr]
64     \label{eq:dipolePot}
65     \end{equation}
66    
67     \begin{equation}
68     V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
69     {4\pi\epsilon_{0} r_{ij}}
70     \label{eq:chargePot}
71     \end{equation}
72    
73     The second step taken to simplify the number of calculationsis to
74     incorporate unified models for groups of atoms. In the case of water,
75     we use the soft sticky dipole (SSD) model developed by
76     Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a
77     unified head atom with a dipole will replace the atoms in the head
78     group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will
79     replace the alkanes in the tails (Section~\ref{sec:lipidModel}).
80    
81    
82     \subsection{Time Scale Simplifications}
83    
84     \subsection{The Soft Sticky Water Model}
85     \label{sec:ssdModel}
86    
87     \subsection{The Phospholipid Model}
88     \label{sec:lipidModel}
89    
90    
91     \bibliographystyle{achemso}
92     \bibliography{canidacy_paper}
93     \end{document}