ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_paper/canidacy_paper.tex
Revision: 96
Committed: Thu Aug 22 21:49:34 2002 UTC (21 years, 10 months ago) by mmeineke
Content type: application/x-tex
File size: 5403 byte(s)
Log Message:
added some equations and other misc stuff. needs lots of work.

File Contents

# User Rev Content
1 mmeineke 95 \documentclass[11pt]{article}
2    
3     \usepackage{graphicx}
4     \usepackage{amsmath}
5     \usepackage{amssymb}
6     \usepackage[ref]{overcite}
7    
8    
9    
10     \pagestyle{plain}
11     \pagenumbering{arabic}
12     \oddsidemargin 0.0cm \evensidemargin 0.0cm
13     \topmargin -21pt \headsep 10pt
14     \textheight 9.0in \textwidth 6.5in
15     \brokenpenalty=10000
16     \renewcommand{\baselinestretch}{1.2}
17     \renewcommand\citemid{\ } % no comma in optional reference note
18    
19    
20     \begin{document}
21    
22     \title{A Mesoscale Model for Phospholipid Simulations}
23    
24     \author{Matthew A. Meineke\\
25     Department of Chemistry and Biochemistry\\
26     University of Notre Dame\\
27     Notre Dame, Indiana 46556}
28    
29     \date{\today}
30     \maketitle
31    
32     \section{Background and Research Goals}
33    
34     \section{Methodology}
35    
36 mmeineke 96 \subsection{Length and Time Scale Simplifications}
37 mmeineke 95
38     The length scale simplifications are aimed at increaseing the number
39     of molecules simulated without drastically increasing the
40     computational cost of the system. This is done by a combination of
41     substituting less expensive interactions for expensive ones and
42     decreasing the number of interaction sites per molecule. Namely,
43     charge distributions are replaced with dipoles, and unified atoms are
44     used in place of water and phospholipid head groups.
45    
46     The replacement of charge distributions with dipoles allows us to
47     replace an interaction that has a relatively long range, $\frac{1}{r}$
48     for the charge charge potential, with that of a relitively short
49     range, $\frac{1}{r^{3}}$ for dipole - dipole potentials
50     (Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us
51     to use computaional simplifications algorithms such as Verlet neighbor
52     lists,\cite{allen87:csl} which gives computaional scaling by $N$. This
53     is in comparison to the Ewald sum\cite{leach01:mm} needed to compute
54     the charge - charge interactions which scales at best by $N
55     \ln N$.
56    
57     \begin{equation}
58     V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
59     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
60     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
61     -
62     \frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) %
63     (\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr]
64     \label{eq:dipolePot}
65     \end{equation}
66    
67     \begin{equation}
68     V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
69     {4\pi\epsilon_{0} r_{ij}}
70     \label{eq:chargePot}
71     \end{equation}
72    
73     The second step taken to simplify the number of calculationsis to
74     incorporate unified models for groups of atoms. In the case of water,
75     we use the soft sticky dipole (SSD) model developed by
76     Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a
77     unified head atom with a dipole will replace the atoms in the head
78     group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will
79     replace the alkanes in the tails (Section~\ref{sec:lipidModel}).
80    
81 mmeineke 96 The time scale simplifications are taken so that the simulation can
82     take long time steps. By incresing the time steps taken by the
83     simulation, we are able to integrate the simulation trajectory with
84     fewer calculations. However, care must be taken to conserve the energy
85     of the simulation. This is a constraint placed upon the system by
86     simulating in the microcanonical ensemble. In practice, this means
87     taking steps small enough to resolve all motion in the system without
88     accidently moving an object too far along a repulsive energy surface
89     before it feels the affect of the surface.
90 mmeineke 95
91 mmeineke 96 In our simulation we have chosen to constrain all bonds to be of fixed
92     length. This means the bonds are no longer allowed to vibrate about
93     their equilibrium positions, typically the fastest periodical motion
94     in a dynamics simulation. By taking this action, we are able to take
95     time steps of 3 fs while still maintaining constant energy. This is in
96     contrast to the 1 fs time step typically needed to conserve energy when
97     bonds are allowed to vibrate.
98 mmeineke 95
99     \subsection{The Soft Sticky Water Model}
100     \label{sec:ssdModel}
101    
102 mmeineke 96
103    
104     \begin{equation}
105     \label{eq:ssdTotPot}
106     V_{\text{ssd}} = V_{\text{LJ}}(r_{i\!j}) + V_{\text{dp}}(\mathbf{r}_{i\!j},
107     \boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
108     + V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
109     \boldsymbol{\Omega}_{j})
110     \end{equation}
111    
112     \begin{equation}
113     \label{eq:spPot}
114     V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
115     \boldsymbol{\Omega}_{j}) =
116     v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
117     \boldsymbol{\Omega}_{j})
118     +
119     s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
120     \boldsymbol{\Omega}_{j})]
121     \end{equation}
122    
123     \begin{equation}
124     \label{eq:apPot2}
125     w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
126     \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
127     + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
128     \end{equation}
129    
130     \begin{equation}
131     \label{eq:spCorrection}
132     \begin{split}
133     w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) &=
134     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
135     &\phantom{=} + (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
136     \end{split}
137     \end{equation}
138    
139     \begin{equation}
140     \label{eq:spCutoff}
141     s(r_{ij}) =
142     \begin{cases}
143     1& \text{if $r_{ij} < r_{L}$}, \\
144     \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
145     - 3r_{L})}{(r_{U}-r_{L})^3}&
146     \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
147     0& \text{if $r_{ij} \geq r_{U}$}.
148     \end{cases}
149     \end{equation}
150    
151 mmeineke 95 \subsection{The Phospholipid Model}
152     \label{sec:lipidModel}
153    
154    
155     \bibliographystyle{achemso}
156     \bibliography{canidacy_paper}
157     \end{document}