ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_paper/canidacy_paper.tex
(Generate patch)

Comparing trunk/matt_papers/canidacy_paper/canidacy_paper.tex (file contents):
Revision 94 by mmeineke, Wed Aug 21 17:39:00 2002 UTC vs.
Revision 101 by mmeineke, Tue Aug 27 02:32:29 2002 UTC

# Line 1 | Line 1
1 < \documentstyle{article}
1 > \documentclass[11pt]{article}
2 >
3 > \usepackage{graphicx}
4 > \usepackage{floatflt}
5 > \usepackage{amsmath}
6 > \usepackage{amssymb}
7 > \usepackage[ref]{overcite}
8 >
9 >
10 >
11 > \pagestyle{plain}
12 > \pagenumbering{arabic}
13 > \oddsidemargin 0.0cm \evensidemargin 0.0cm
14 > \topmargin -21pt \headsep 10pt
15 > \textheight 9.0in \textwidth 6.5in
16 > \brokenpenalty=10000
17 > \renewcommand{\baselinestretch}{1.2}
18 > \renewcommand\citemid{\ } % no comma in optional reference note
19 >
20 >
21 > \begin{document}
22 >
23 >
24 > \title{A Mesoscale Model for Phospholipid Simulations}
25 >
26 > \author{Matthew A. Meineke\\
27 > Department of Chemistry and Biochemistry\\
28 > University of Notre Dame\\
29 > Notre Dame, Indiana 46556}
30 >
31 > \date{\today}
32 > \maketitle
33 >
34 > \section{Background and Research Goals}
35 >
36 > \section{Methodology}
37 >
38 > \subsection{Length and Time Scale Simplifications}
39 >
40 > The length scale simplifications are aimed at increaseing the number
41 > of molecules simulated without drastically increasing the
42 > computational cost of the system. This is done by a combination of
43 > substituting less expensive interactions for expensive ones and
44 > decreasing the number of interaction sites per molecule. Namely,
45 > charge distributions are replaced with dipoles, and unified atoms are
46 > used in place of water and phospholipid head groups.
47 >
48 > The replacement of charge distributions with dipoles allows us to
49 > replace an interaction that has a relatively long range, $\frac{1}{r}$
50 > for the charge charge potential, with that of a relitively short
51 > range, $\frac{1}{r^{3}}$ for dipole - dipole potentials
52 > (Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us
53 > to use computaional simplifications algorithms such as Verlet neighbor
54 > lists,\cite{allen87:csl} which gives computaional scaling by $N$. This
55 > is in comparison to the Ewald sum\cite{leach01:mm} needed to compute
56 > the charge - charge interactions which scales at best by $N
57 > \ln N$.
58 >
59 > \begin{equation}
60 > V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
61 >        \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
62 >        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
63 >        -
64 >        \frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) %
65 >                (\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr]
66 > \label{eq:dipolePot}
67 > \end{equation}
68 >
69 > \begin{equation}
70 > V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
71 >        {4\pi\epsilon_{0} r_{ij}}
72 > \label{eq:chargePot}
73 > \end{equation}
74 >
75 > The second step taken to simplify the number of calculationsis to
76 > incorporate unified models for groups of atoms. In the case of water,
77 > we use the soft sticky dipole (SSD) model developed by
78 > Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a
79 > unified head atom with a dipole will replace the atoms in the head
80 > group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will
81 > replace the alkanes in the tails (Section~\ref{sec:lipidModel}).
82 >
83 > The time scale simplifications are taken so that the simulation can
84 > take long time steps. By incresing the time steps taken by the
85 > simulation, we are able to integrate the simulation trajectory with
86 > fewer calculations. However, care must be taken to conserve the energy
87 > of the simulation. This is a constraint placed upon the system by
88 > simulating in the microcanonical ensemble. In practice, this means
89 > taking steps small enough to resolve all motion in the system without
90 > accidently moving an object too far along a repulsive energy surface
91 > before it feels the affect of the surface.
92 >
93 > In our simulation we have chosen to constrain all bonds to be of fixed
94 > length. This means the bonds are no longer allowed to vibrate about
95 > their equilibrium positions, typically the fastest periodical motion
96 > in a dynamics simulation. By taking this action, we are able to take
97 > time steps of 3 fs while still maintaining constant energy. This is in
98 > contrast to the 1 fs time step typically needed to conserve energy when
99 > bonds lengths are allowed to oscillate.
100 >
101 > \subsection{The Soft Sticky Water Model}
102 > \label{sec:ssdModel}
103 >
104 > \begin{floatingfigure}{55mm}
105 > \includegraphics[width=45mm]{ssd.epsi}
106 > \caption{The SSD model with the oxygen and hydrogen atoms drawn in for reference. \vspace{5mm}}
107 > % The dipole magnitude is 2.35 D and the Lennard-Jones parameters are $\sigma = 3.051 \mbox{\AA}$ and $\epsilon = 0.152$ kcal/mol.}
108 > \label{fig:ssdModel}
109 > \end{floatingfigure}
110 >
111 > The water model used in our simulations is a modified soft Stockmayer
112 > sphere model. Like the soft Stockmayer sphere, the SSD
113 > model\cite{Liu96} consists of a Lennard-Jones interaction site and a
114 > dipole both located at the water's center of mass (Figure
115 > \ref{fig:ssdModel}). However, the SSD model extends this by adding a
116 > tetrahedral potential to correct for hydrogen bonding.
117 >
118 > This SSD water's motion is then governed by the following potential:
119 > \begin{equation}
120 > V_{\text{ssd}} = V_{\text{LJ}}(r_{i\!j}) + V_{\text{dp}}(\mathbf{r}_{i\!j},
121 >        \boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
122 >        + V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
123 >        \boldsymbol{\Omega}_{j})
124 > \label{eq:ssdTotPot}
125 > \end{equation}
126 > $V_{\text{LJ}}$ is the Lennard-Jones potential with $\sigma_{\text{w}}
127 > = 3.051 \mbox{ \AA}$ and $\epsilon_{\text{w}} = 0.152\text{
128 > kcal/mol}$. $V_{\text{dp}}$ is the dipole potential with
129 > $|\mu_{\text{w}}| = 2.35\text{ D}$.
130 >
131 > The hydrogen bonding of the model is governed by the $V_{\text{sp}}$
132 > term of the potentail. Its form is as follows:
133 > \begin{equation}
134 > V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
135 >        \boldsymbol{\Omega}_{j}) =
136 >        v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
137 >                \boldsymbol{\Omega}_{j})
138 >        +
139 >        s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
140 >                \boldsymbol{\Omega}_{j})]
141 > \label{eq:spPot}
142 > \end{equation}
143 > Where $v^\circ$ is responsible for scaling the strength of the
144 > interaction.
145 > $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
146 > and
147 > $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
148 > are responsible for the tetrahedral potential and a correction to the
149 > tetrahedral potential respectively. They are,
150 > \begin{equation}
151 > w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
152 >        \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
153 >        + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
154 > \label{eq:apPot2}
155 > \end{equation}
156 > and
157 > \begin{equation}
158 > \begin{split}
159 > w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
160 >        &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
161 >        &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
162 > \end{split}
163 > \label{eq:spCorrection}
164 > \end{equation}
165 > The correction
166 > $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
167 > is needed because
168 > $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
169 > vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. The angles
170 > $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical polar
171 > coordinates of the position of sphere $j$ in the reference frame fixed
172 > on sphere $i$ with the z-axis alligned with the dipole moment.
173 >
174 > Finaly, the sticky potentail is scaled by a cutoff function,
175 > $s(r_{ij})$ that scales smoothly between 0 and 1. It is represented
176 > by:
177 > \begin{equation}
178 > s(r_{ij}) =
179 >        \begin{cases}
180 >        1&      \text{if $r_{ij} < r_{L}$}, \\
181 >        \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
182 >                - 3r_{L})}{(r_{U}-r_{L})^3}&
183 >                \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
184 >        0&      \text{if $r_{ij} \geq r_{U}$}.
185 >        \end{cases}
186 > \label{eq:spCutoff}
187 > \end{equation}
188 >
189 >
190 > \subsection{The Phospholipid Model}
191 > \label{sec:lipidModel}
192 >
193 > \begin{floatingfigure}{90mm}
194 > \includegraphics[angle=-90,width=80mm]{lipidModel.epsi}
195 > \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length. \vspace{5mm}}
196 > \label{fig:lipidModel}
197 > \end{floatingfigure}
198 >
199 > The lipid molecules in our simulations are unified atom models. Figure
200 > \ref{fig:lipidModel} shows a template drawing for one of our
201 > lipids. The Head group of the phospholipid is replaced by a single
202 > Lennard-Jones sphere with a freely oriented dipole placed at it's
203 > center. The magnitude of it's dipole moment is 20.6 D. The tail atoms
204 > are unifed $\text{CH}_2$ and $\text{CH}_3$ atoms and are also modeled
205 > as Lennard-Jones spheres. The total potential for the lipid is
206 > represented by Equation \ref{eq:lipidModelPot}.
207 >
208 > \begin{equation}
209 > V_{\mbox{lipid}} = \overbrace{%
210 >        V_{\text{bend}}(\theta_{ijk}) +%
211 >        V_{\text{tors.}}(\phi_{ijkl})}^{bonded}
212 >        + \overbrace{%
213 >        V_{\text{LJ}}(r_{i\!j}) +
214 >        V_{\text{dp}}(r_{i\!j},\Omega_{i},\Omega_{j})%
215 >        }^{non-bonded}
216 > \label{eq:lipidModelPot}
217 > \end{equation}
218 >
219 > The non bonded interactions, $V_{\text{LJ}}$ and $V_{\text{dp}}$, are
220 > the Lennard-Jones and dipole-dipole interactions respectively. For the
221 > non-bonded potentials, only the bend and the torsional potentials are
222 > calculated. The bond potential is not calculated, and the bond lengths
223 > are constrained via RATTLE.\cite{leach01:mm} The bend potential is of
224 > the form:
225 > \begin{equation}
226 > V_{\text{bend}}(\theta_{ijk}) = k_{\theta}\frac{(\theta_{ijk} - \theta_0)^2}{2}
227 > \label{eq:bendPot}
228 > \end{equation}
229 > Where $k_{\theta}$ sets the stiffness of the bend potential, and $\theta_0$
230 > sets the equilibrium bend angle. The torsion potential was given by:
231 > \begin{equation}
232 > V_{\text{tors.}}(\phi_{ijkl})= \cos(\phi_{ijkl})
233 > \label{eq:torsPot}
234 > \end{equation}
235 > Here, ``blank'' controls the scaling of the torsion potential, and the
236 > $c$ terms are paramterized for the $\cos$ expansion. All parameters
237 > for bonded and non-bonded potentials in the tail atoms were taken from
238 > TraPPE.\cite{Siepmann1998} The bonded interactions for the head atom
239 > were also taken from TraPPE, however it's dipole moment and mass were
240 > based on the properties of ``DMPC?'''s head group. The Lennard-Jones
241 > parameter for the Head group was chosen such that it was roughly twice
242 > the size of a $\text{CH}_3$ atom, and it's well depth was set to be
243 > aproximately equal to that of $\text{CH}_3$.
244 >
245 > \section{Simulations}
246 > \subsection{25 lipids in water}
247 >
248 > \subsection{50 randomly oriented lipids in water}
249 >
250 > \section{Preliminary Results}
251 >
252 > \section{Discussion}
253 >
254 > \section{Future Directions}
255 >
256 >
257 > \pagebreak
258 > \bibliographystyle{achemso}
259 > \bibliography{canidacy_paper} \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines