ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_paper/canidacy_paper.tex
(Generate patch)

Comparing trunk/matt_papers/canidacy_paper/canidacy_paper.tex (file contents):
Revision 94 by mmeineke, Wed Aug 21 17:39:00 2002 UTC vs.
Revision 95 by mmeineke, Wed Aug 21 21:25:08 2002 UTC

# Line 1 | Line 1
1 < \documentstyle{article}
1 > \documentclass[11pt]{article}
2 >
3 > \usepackage{graphicx}
4 > \usepackage{amsmath}
5 > \usepackage{amssymb}
6 > \usepackage[ref]{overcite}
7 >
8 >
9 >
10 > \pagestyle{plain}
11 > \pagenumbering{arabic}
12 > \oddsidemargin 0.0cm \evensidemargin 0.0cm
13 > \topmargin -21pt \headsep 10pt
14 > \textheight 9.0in \textwidth 6.5in
15 > \brokenpenalty=10000
16 > \renewcommand{\baselinestretch}{1.2}
17 > \renewcommand\citemid{\ } % no comma in optional reference note
18 >
19 >
20 > \begin{document}
21 >
22 > \title{A Mesoscale Model for Phospholipid Simulations}
23 >
24 > \author{Matthew A. Meineke\\
25 > Department of Chemistry and Biochemistry\\
26 > University of Notre Dame\\
27 > Notre Dame, Indiana 46556}
28 >
29 > \date{\today}
30 > \maketitle
31 >
32 > \section{Background and Research Goals}
33 >
34 > \section{Methodology}
35 >
36 > \subsection{Length Scale Simplifications}
37 >
38 > The length scale simplifications are aimed at increaseing the number
39 > of molecules simulated without drastically increasing the
40 > computational cost of the system. This is done by a combination of
41 > substituting less expensive interactions for expensive ones and
42 > decreasing the number of interaction sites per molecule. Namely,
43 > charge distributions are replaced with dipoles, and unified atoms are
44 > used in place of water and phospholipid head groups.
45 >
46 > The replacement of charge distributions with dipoles allows us to
47 > replace an interaction that has a relatively long range, $\frac{1}{r}$
48 > for the charge charge potential, with that of a relitively short
49 > range, $\frac{1}{r^{3}}$ for dipole - dipole potentials
50 > (Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us
51 > to use computaional simplifications algorithms such as Verlet neighbor
52 > lists,\cite{allen87:csl} which gives computaional scaling by $N$. This
53 > is in comparison to the Ewald sum\cite{leach01:mm} needed to compute
54 > the charge - charge interactions which scales at best by $N
55 > \ln N$.
56 >
57 > \begin{equation}
58 > V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
59 >        \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
60 >        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
61 >        -
62 >        \frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) %
63 >                (\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr]
64 > \label{eq:dipolePot}
65 > \end{equation}
66 >
67 > \begin{equation}
68 > V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
69 >        {4\pi\epsilon_{0} r_{ij}}
70 > \label{eq:chargePot}
71 > \end{equation}
72 >
73 > The second step taken to simplify the number of calculationsis to
74 > incorporate unified models for groups of atoms. In the case of water,
75 > we use the soft sticky dipole (SSD) model developed by
76 > Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a
77 > unified head atom with a dipole will replace the atoms in the head
78 > group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will
79 > replace the alkanes in the tails (Section~\ref{sec:lipidModel}).
80 >
81 >
82 > \subsection{Time Scale Simplifications}
83 >
84 > \subsection{The Soft Sticky Water Model}
85 > \label{sec:ssdModel}
86 >
87 > \subsection{The Phospholipid Model}
88 > \label{sec:lipidModel}
89 >
90 >
91 > \bibliographystyle{achemso}
92 > \bibliography{canidacy_paper}
93 > \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines