ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_paper/canidacy_paper.tex
(Generate patch)

Comparing trunk/matt_papers/canidacy_paper/canidacy_paper.tex (file contents):
Revision 97 by mmeineke, Sat Aug 24 15:55:38 2002 UTC vs.
Revision 98 by mmeineke, Sat Aug 24 17:21:16 2002 UTC

# Line 1 | Line 1
1   \documentclass[11pt]{article}
2  
3   \usepackage{graphicx}
4 + \usepackage{floatflt}
5   \usepackage{amsmath}
6   \usepackage{amssymb}
7   \usepackage[ref]{overcite}
# Line 19 | Line 20
20  
21   \begin{document}
22  
23 +
24   \title{A Mesoscale Model for Phospholipid Simulations}
25  
26   \author{Matthew A. Meineke\\
# Line 99 | Line 101 | The water model used in our simulations is
101   \subsection{The Soft Sticky Water Model}
102   \label{sec:ssdModel}
103  
104 < The water model used in our simulations is
104 > \begin{floatingfigure}{55mm}
105 > \includegraphics[width=45mm]{ssd.epsi}
106 > \caption{The SSD model with the oxygen and hydrogen atoms drawn in for reference. \vspace{5mm}}
107 > % The dipole magnitude is 2.35 D and the Lennard-Jones parameters are $\sigma = 3.051 \mbox{\AA}$ and $\epsilon = 0.152$ kcal/mol.}
108 > \label{fig:ssdModel}
109 > \end{floatingfigure}
110  
111 + The water model used in our simulations is a modified soft Stockmayer
112 + sphere model. Like the soft Stockmayer sphere, the SSD
113 + model\cite{Liu96} consists of a Lennard-Jones interaction site and a
114 + dipole both located at the water's center of mass (Figure
115 + \ref{fig:ssdModel}). However, the SSD model extends this by adding a
116 + tetrahedral potential to correct for hydrogen bonding.
117 +
118 + This SSD water's motion is then governed by the following potential:
119   \begin{equation}
105 \label{eq:ssdTotPot}
120   V_{\text{ssd}} = V_{\text{LJ}}(r_{i\!j}) + V_{\text{dp}}(\mathbf{r}_{i\!j},
121          \boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
122          + V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
123          \boldsymbol{\Omega}_{j})
124 + \label{eq:ssdTotPot}
125   \end{equation}
126 + $V_{\text{LJ}}$ is the Lennard-Jones potential with $\sigma_{\text{w}}
127 + = 3.051 \mbox{ \AA}$ and $\epsilon_{\text{w}} = 0.152\text{
128 + kcal/mol}$. $V_{\text{dp}}$ is the dipole potential with
129 + $|\mu_{\text{w}}| = 2.35\text{ D}$.
130  
131 + The hydrogen bonding of the model is governed by the $V_{\text{sp}}$ term of the potentail. Its form is as follows:
132   \begin{equation}
113 \label{eq:spPot}
133   V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
134          \boldsymbol{\Omega}_{j}) =
135          v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
# Line 118 | Line 137 | V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i
137          +
138          s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
139                  \boldsymbol{\Omega}_{j})]
140 + \label{eq:spPot}
141   \end{equation}
142 <
142 > Where $v^\circ$ is responsible for scaling the strength of the
143 > interaction.
144 > $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
145 > and
146 > $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
147 > are responsible for the tetrahedral potential and a correction to the
148 > tetrahedral potential respectively. They are,
149   \begin{equation}
124 \label{eq:apPot2}
150   w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
151          \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
152          + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
153 + \label{eq:apPot2}
154   \end{equation}
155 <
155 > and
156   \begin{equation}
131 \label{eq:spCorrection}
157   \begin{split}
158 < w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) &=
159 <        (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
160 <        &\phantom{=} + (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
158 > w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
159 >        &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
160 >        &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
161   \end{split}
162 + \label{eq:spCorrection}
163   \end{equation}
164 + The correction
165 + $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
166 + is needed because
167 + $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
168 + vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical polar coordinates of the position of sphere $j$ in the reference frame fixed on sphere $i$ with the z-axis alligned with the dipole moment.
169  
170 + Finaly, the  sticky potentail is scaled by a cutoff function, $s(r_{ij})$ that scales smoothly between 0 and 1. It is represented by:
171   \begin{equation}
140 \label{eq:spCutoff}
172   s(r_{ij}) =
173          \begin{cases}
174          1&      \text{if $r_{ij} < r_{L}$}, \\
# Line 146 | Line 177 | s(r_{ij}) =
177                  \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
178          0&      \text{if $r_{ij} \geq r_{U}$}.
179          \end{cases}
180 + \label{eq:spCutoff}
181   \end{equation}
182  
183 +
184   \subsection{The Phospholipid Model}
185   \label{sec:lipidModel}
186  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines