ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_paper/canidacy_paper.tex
Revision: 96
Committed: Thu Aug 22 21:49:34 2002 UTC (21 years, 10 months ago) by mmeineke
Content type: application/x-tex
File size: 5403 byte(s)
Log Message:
added some equations and other misc stuff. needs lots of work.

File Contents

# Content
1 \documentclass[11pt]{article}
2
3 \usepackage{graphicx}
4 \usepackage{amsmath}
5 \usepackage{amssymb}
6 \usepackage[ref]{overcite}
7
8
9
10 \pagestyle{plain}
11 \pagenumbering{arabic}
12 \oddsidemargin 0.0cm \evensidemargin 0.0cm
13 \topmargin -21pt \headsep 10pt
14 \textheight 9.0in \textwidth 6.5in
15 \brokenpenalty=10000
16 \renewcommand{\baselinestretch}{1.2}
17 \renewcommand\citemid{\ } % no comma in optional reference note
18
19
20 \begin{document}
21
22 \title{A Mesoscale Model for Phospholipid Simulations}
23
24 \author{Matthew A. Meineke\\
25 Department of Chemistry and Biochemistry\\
26 University of Notre Dame\\
27 Notre Dame, Indiana 46556}
28
29 \date{\today}
30 \maketitle
31
32 \section{Background and Research Goals}
33
34 \section{Methodology}
35
36 \subsection{Length and Time Scale Simplifications}
37
38 The length scale simplifications are aimed at increaseing the number
39 of molecules simulated without drastically increasing the
40 computational cost of the system. This is done by a combination of
41 substituting less expensive interactions for expensive ones and
42 decreasing the number of interaction sites per molecule. Namely,
43 charge distributions are replaced with dipoles, and unified atoms are
44 used in place of water and phospholipid head groups.
45
46 The replacement of charge distributions with dipoles allows us to
47 replace an interaction that has a relatively long range, $\frac{1}{r}$
48 for the charge charge potential, with that of a relitively short
49 range, $\frac{1}{r^{3}}$ for dipole - dipole potentials
50 (Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us
51 to use computaional simplifications algorithms such as Verlet neighbor
52 lists,\cite{allen87:csl} which gives computaional scaling by $N$. This
53 is in comparison to the Ewald sum\cite{leach01:mm} needed to compute
54 the charge - charge interactions which scales at best by $N
55 \ln N$.
56
57 \begin{equation}
58 V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
59 \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
60 \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
61 -
62 \frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) %
63 (\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr]
64 \label{eq:dipolePot}
65 \end{equation}
66
67 \begin{equation}
68 V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
69 {4\pi\epsilon_{0} r_{ij}}
70 \label{eq:chargePot}
71 \end{equation}
72
73 The second step taken to simplify the number of calculationsis to
74 incorporate unified models for groups of atoms. In the case of water,
75 we use the soft sticky dipole (SSD) model developed by
76 Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a
77 unified head atom with a dipole will replace the atoms in the head
78 group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will
79 replace the alkanes in the tails (Section~\ref{sec:lipidModel}).
80
81 The time scale simplifications are taken so that the simulation can
82 take long time steps. By incresing the time steps taken by the
83 simulation, we are able to integrate the simulation trajectory with
84 fewer calculations. However, care must be taken to conserve the energy
85 of the simulation. This is a constraint placed upon the system by
86 simulating in the microcanonical ensemble. In practice, this means
87 taking steps small enough to resolve all motion in the system without
88 accidently moving an object too far along a repulsive energy surface
89 before it feels the affect of the surface.
90
91 In our simulation we have chosen to constrain all bonds to be of fixed
92 length. This means the bonds are no longer allowed to vibrate about
93 their equilibrium positions, typically the fastest periodical motion
94 in a dynamics simulation. By taking this action, we are able to take
95 time steps of 3 fs while still maintaining constant energy. This is in
96 contrast to the 1 fs time step typically needed to conserve energy when
97 bonds are allowed to vibrate.
98
99 \subsection{The Soft Sticky Water Model}
100 \label{sec:ssdModel}
101
102
103
104 \begin{equation}
105 \label{eq:ssdTotPot}
106 V_{\text{ssd}} = V_{\text{LJ}}(r_{i\!j}) + V_{\text{dp}}(\mathbf{r}_{i\!j},
107 \boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
108 + V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
109 \boldsymbol{\Omega}_{j})
110 \end{equation}
111
112 \begin{equation}
113 \label{eq:spPot}
114 V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
115 \boldsymbol{\Omega}_{j}) =
116 v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
117 \boldsymbol{\Omega}_{j})
118 +
119 s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
120 \boldsymbol{\Omega}_{j})]
121 \end{equation}
122
123 \begin{equation}
124 \label{eq:apPot2}
125 w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
126 \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
127 + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
128 \end{equation}
129
130 \begin{equation}
131 \label{eq:spCorrection}
132 \begin{split}
133 w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) &=
134 (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
135 &\phantom{=} + (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
136 \end{split}
137 \end{equation}
138
139 \begin{equation}
140 \label{eq:spCutoff}
141 s(r_{ij}) =
142 \begin{cases}
143 1& \text{if $r_{ij} < r_{L}$}, \\
144 \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
145 - 3r_{L})}{(r_{U}-r_{L})^3}&
146 \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
147 0& \text{if $r_{ij} \geq r_{U}$}.
148 \end{cases}
149 \end{equation}
150
151 \subsection{The Phospholipid Model}
152 \label{sec:lipidModel}
153
154
155 \bibliographystyle{achemso}
156 \bibliography{canidacy_paper}
157 \end{document}