ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.backup
Revision: 63
Committed: Wed Aug 7 19:09:03 2002 UTC (22 years, 1 month ago) by mmeineke
File size: 10054 byte(s)
Log Message:
switched in Chuck's magic slide enviroment

File Contents

# User Rev Content
1 mmeineke 63 % temporary preamble
2    
3     %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4    
5     \documentclass{seminar}
6     \usepackage{color}
7    
8     \usepackage{amsmath}
9     \usepackage{amssymb}
10     \usepackage{wrapfig}
11     \usepackage{epsf}
12     \usepackage{jurabib}
13    
14     % ----------------------
15     % | Title |
16     % ----------------------
17    
18     \title{A Mezzoscale Model for Phospholipid MD Simulations}
19    
20     \author{Matthew A. Meineke\\
21     Department of Chemistry and Biochemistry\\
22     University of Notre Dame\\
23     Notre Dame, Indiana 46556}
24    
25     \date{\today}
26    
27     %-------------------------------------------------------------------
28     % Begin Document
29    
30     \begin{document}
31    
32     \maketitle
33    
34     \bibliography{canidacy_slides}
35     \bibliographystyle{jurabib}
36    
37    
38    
39    
40    
41     % Slide 1
42     \begin{slide} {Talk Outline}
43     \begin{itemize}
44    
45     \item Discussion of the research motivation and goals
46    
47     \item Methodology
48    
49     \item Discussion of current research and preliminary results
50    
51     \item Future research
52    
53     \end{itemize}
54     \end{slide}
55    
56    
57     % Slide 2
58    
59     \begin{slide}{Motivation A: Long Length Scales}
60    
61    
62    
63     \begin{wrapfigure}{r}{45mm}
64    
65     \epsfxsize=45mm
66     \epsfbox{ripple.epsi}
67    
68     \end{wrapfigure}
69    
70     Ripple phase:
71    
72     \begin{itemize}
73    
74     \item
75     The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
76     to fluid phase.
77    
78     \item
79     periodicity of 100 - 200 $\mbox{\AA}$\footcite{Berne90}
80    
81     \end{itemize}
82     \end{slide}
83    
84    
85    
86    
87    
88    
89     \begin{slide}{Motivation}
90    
91     There is a strong need in phospholipid bilayer simulations for the
92     capability to simulate both long time and length scales. Consider the
93     following:
94    
95     \begin{itemize}
96    
97     \item Drug diffusion
98     \begin{itemize}
99     \item Some drug molecules may spend an appreciable time in the
100     membrane. Long time scale dynamics are needed to observe and
101     characterize their actions.
102     \end{itemize}
103    
104     \item Ripple phase
105     \begin{itemize}
106     \item Between the bilayer gel and fluid phase there exists a ripple
107     phase. This phase has a period of about 100 - 200 $\mbox{\AA}$.
108     \end{itemize}
109    
110     \item Bilayer formation dynamics
111     \begin{itemize}
112     \item Initial simulations show that bilayers can take upwards of
113     20 ns to form completely.
114     \end{itemize}
115    
116     \end{itemize}
117     \end{slide}
118    
119    
120     % Slide 4
121    
122     \begin{slide}{Length Scale Simplification}
123     \begin{itemize}
124    
125     \item
126     Replace any charged interactions of the system with dipoles.
127    
128     \begin{itemize}
129     \item Allows for computational scaling approximately by $N$ for
130     dipole-dipole interactions.
131     \item In contrast, the Ewald sum scales approximately by $N \log N$.
132     \end{itemize}
133    
134     \item
135     Use unified models for the water and the lipid chain.
136    
137     \begin{itemize}
138     \item Drastically reduces the number of atoms to simulate.
139     \item Number of water interactions alone reduced by $\frac{1}{3}$.
140     \end{itemize}
141     \end{itemize}
142     \end{slide}
143    
144    
145     % Slide 5
146    
147     \begin{slide}{Time Scale Simplification}
148     \begin{itemize}
149    
150     \item
151     No explicit hydrogens
152    
153     \begin{itemize}
154     \item Hydrogen bond vibration is normally one of the fastest time
155     events in a simulation.
156     \end{itemize}
157    
158     \item
159     Constrain all bonds to be of fixed length.
160    
161     \begin{itemize}
162     \item As with the hydrogens, bond vibrations are the fastest motion in
163     a simulation
164     \end{itemize}
165    
166     \item
167     Allows time steps of up to 3 fs with the current integrator.
168    
169     \end{itemize}
170     \end{slide}
171    
172    
173     % Slide 6
174     \begin{slide}{Molecular Dynamics}
175    
176     All of our simulations will be carried out using molecular
177     dynamics. This involves solving Newton's equations of motion using
178     the classical \emph{Hamiltonian} as follows:
179    
180     \begin{equation}
181     H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
182     \end{equation}
183    
184     Here $T(\vec{p})$ is the kinetic energy of the system which is a
185     function of momentum. In Cartesian space, $T(\vec{p})$ can be
186     written as:
187    
188     \begin{equation}
189     T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
190     \end{equation}
191    
192     \end{slide}
193    
194    
195     % Slide 7
196     \begin{slide}{The Potential}
197    
198     The main part of the simulation is then the calculation of forces from
199     the potential energy.
200    
201     \begin{equation}
202     \vec{F}(\vec{q}) = - \nabla V(\vec{q})
203     \end{equation}
204    
205     The potential itself is made of several parts.
206    
207     \begin{equation}
208     V_{tot} =
209     \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
210     \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
211     \end{equation}
212    
213     Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
214     the bond, bend, and torsion potentials, and the non-bonded
215     interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
216     lenard-jones, dipole-dipole, and sticky potential interactions.
217    
218     \end{slide}
219    
220    
221     % Slide 8
222    
223     \begin{slide}{Soft Sticky Dipole Model}
224    
225     The Soft-Sticky model for water is a reduced model.
226    
227     \begin{itemize}
228    
229     \item
230     The model is represented by a single point mass at the water's center
231     of mass.
232    
233     \item
234     The point mass contains a fixed dipole of 2.35 D pointing from the
235     oxygens toward the hydrogens.
236    
237     \end{itemize}
238    
239     It's potential is as follows:
240    
241     \begin{equation}
242     V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
243     + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
244     \end{equation}
245     \end{slide}
246    
247     % Slide 8b
248    
249     \begin{slide}{SSD Diagram}
250    
251     \begin{center}
252     \begin{figure}
253     \epsfxsize=50mm
254     \epsfbox{ssd.epsi}
255     \end{figure}
256     \end{center}
257    
258     A Diagram of the SSD model.
259     \end{slide}
260    
261     % Slide 9
262     \begin{slide}{Hydrogen Bonding in SSD}
263    
264     It is important to note that SSD has a potential specifically to
265     recreate the hydrogen bonding network of water.
266    
267    
268     ICE SSD
269    
270     ICE point Dipole
271    
272    
273     The importance of the hydrogen bond network is it's significant
274     contribution to the hydrophobic driving force of bilayer formation.
275     \end{slide}
276    
277    
278     % Slide 10
279    
280     \begin{slide}{The Lipid Model}
281    
282     To eliminate the need for charge-charge interactions, our lipid model
283     replaces the phospholipid head group with a single large head group
284     atom containing a freely oriented dipole. The tail is a simple alkane chain.
285    
286     Lipid Properties:
287     \begin{itemize}
288     \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$
289     \item $m_{\text{HEAD}} = 196\ \text{amu}$
290     \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms
291     \begin{itemize}
292     \item Alkane forcefield parameters taken from TraPPE
293     \end{itemize}
294     \end{itemize}
295    
296     \end{slide}
297    
298    
299     % Slide 11
300    
301     \begin{slide}{Lipid Model}
302    
303    
304    
305     \end{slide}
306    
307    
308     % Slide 12
309    
310     \begin{slide}{Initial Runs: 25 Lipids in water}
311    
312     \textbf{Simulation Parameters:}
313    
314     \begin{itemize}
315    
316     \item Starting Configuration:
317     \begin{itemize}
318     \item 25 lipid molecules arranged in a 5 x 5 square
319     \item square was surrounded by a sea of 1386 waters
320     \begin{itemize}
321     \item final water to lipid ratio was 55.4:1
322     \end{itemize}
323     \end{itemize}
324    
325     \item Lipid had only a single saturated chain of 16 carbons
326    
327     \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$
328    
329     \item dt = 2.0 - 3.0 fs
330    
331     \item T = 300 K
332    
333     \item NVE ensemble
334    
335     \item Periodic boundary conditions
336     \end{itemize}
337    
338     \end{slide}
339    
340    
341     % Slide 13
342    
343     \begin{slide}{5x5: Initial}
344    
345     \begin{center}
346     \begin{figure}
347     \epsfxsize=50mm
348     \epsfbox{5x5-initial.eps}
349     \end{figure}
350     \end{center}
351    
352     The initial configuration
353    
354     \end{slide}
355    
356     \begin{slide}{5x5: Final}
357    
358     \begin{center}
359     \begin{figure}
360     \epsfxsize=60mm
361     \epsfbox{5x5-1.7ns.eps}
362     \end{figure}
363     \end{center}
364    
365     The final configuration at 1.7 ns.
366    
367     \end{slide}
368    
369    
370     % Slide 14
371    
372     \begin{slide}{5x5: $g(r)$}
373    
374     \begin{center}
375     \begin{figure}
376     \epsfxsize=60mm
377     \epsfbox{all5x5-HEAD-HEAD-gr.eps}
378     \end{figure}
379     \end{center}
380    
381    
382     \end{slide}
383    
384     \begin{slide}{5x5: $g(r)$}
385    
386     \begin{center}
387     \begin{figure}
388     \epsfxsize=60mm
389     \epsfbox{all5x5-HEAD-X-gr.eps}
390     \end{figure}
391     \end{center}
392    
393    
394     \end{slide}
395    
396    
397     % Slide 15
398    
399     \begin{slide}{5x5: $\cos$ correlations}
400    
401     \begin{center}
402     \begin{figure}
403     \epsfxsize=60mm
404     \epsfbox{all5x5-HEAD-HEAD-cr.eps}
405     \end{figure}
406     \end{center}
407    
408     \end{slide}
409    
410     \begin{slide}{5x5: $\cos$ correlations}
411    
412     \begin{center}
413     \begin{figure}
414     \epsfxsize=60mm
415     \epsfbox{all5x5-HEAD-X-cr.eps}
416     \end{figure}
417     \end{center}
418    
419     \end{slide}
420    
421    
422     % Slide 16
423    
424     \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
425    
426     \textbf{Simulation Parameters:}
427    
428     \begin{itemize}
429    
430     \item Starting Configuration:
431     \begin{itemize}
432     \item 50 lipid molecules arranged randomly in a rectangular box
433     \item The box was then filled with 1384 waters
434     \begin{itemize}
435     \item final water to lipid ratio was 27:1
436     \end{itemize}
437     \end{itemize}
438    
439     \item Lipid had only a single saturated chain of 16 carbons
440    
441     \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
442    
443     \item dt = 2.0 - 3.0 fs
444    
445     \item T = 300 K
446    
447     \item NVE ensemble
448    
449     \item Periodic boundary conditions
450    
451     \end{itemize}
452    
453     \end{slide}
454    
455    
456     % Slide 17
457    
458     \begin{slide}{R-50: Initial}
459    
460     \begin{center}
461     \begin{figure}
462     \epsfxsize=100mm
463     \epsfbox{r50-initial.eps}
464     \end{figure}
465     \end{center}
466    
467     The initial configuration
468    
469     \end{slide}
470    
471     \begin{slide}{R-50: Final}
472    
473     \begin{center}
474     \begin{figure}
475     \epsfxsize=100mm
476     \epsfbox{r50-521ps.eps}
477     \end{figure}
478     \end{center}
479    
480     The fianl configuration at 521 ps
481    
482     \end{slide}
483    
484    
485     % Slide 18
486    
487     \begin{slide}{R-50: $g(r)$}
488    
489    
490     \begin{center}
491     \begin{figure}
492     \epsfxsize=60mm
493     \epsfbox{r50-HEAD-HEAD-gr.eps}
494     \end{figure}
495     \end{center}
496    
497     \end{slide}
498    
499    
500     \begin{slide}{R-50: $g(r)$}
501    
502    
503     \begin{center}
504     \begin{figure}
505     \epsfxsize=60mm
506     \epsfbox{r50-HEAD-X-gr.eps}
507     \end{figure}
508     \end{center}
509    
510     \end{slide}
511    
512    
513     % Slide 19
514    
515     \begin{slide}{R-50: $\cos$ correlations}
516    
517    
518     \begin{center}
519     \begin{figure}
520     \epsfxsize=60mm
521     \epsfbox{r50-HEAD-HEAD-cr.eps}
522     \end{figure}
523     \end{center}
524    
525     \end{slide}
526    
527     \begin{slide}{R-50: $\cos$ correlations}
528    
529    
530     \begin{center}
531     \begin{figure}
532     \epsfxsize=60mm
533     \epsfbox{r50-HEAD-X-cr.eps}
534     \end{figure}
535     \end{center}
536    
537     \end{slide}
538    
539    
540     % Slide 20
541    
542     \begin{slide}{Future Directions}
543    
544     \begin{itemize}
545    
546     \item
547     Simulation of a lipid with 2 chains, or perhaps expand the current
548     unified chain atoms to take up greater steric bulk.
549    
550     \item
551     Incorporate constant pressure and constant temperature into the ensemble.
552    
553     \item
554     Parrellize the code.
555    
556     \end{itemize}
557     \end{slide}
558    
559    
560     % Slide 21
561    
562     \begin{slide}{Acknowledgements}
563    
564     \begin{itemize}
565    
566     \item Dr. J. Daniel Gezelter
567     \item Christopher Fennel
568     \item Charles Vardeman
569     \item Teng Lin
570    
571     \end{itemize}
572    
573     Funding by:
574     \begin{itemize}
575     \item Dreyfus New Faculty Award
576     \end{itemize}
577    
578     \end{slide}
579    
580    
581    
582    
583    
584    
585    
586    
587     %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
588    
589     \end{document}