ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.backup
Revision: 63
Committed: Wed Aug 7 19:09:03 2002 UTC (21 years, 11 months ago) by mmeineke
File size: 10054 byte(s)
Log Message:
switched in Chuck's magic slide enviroment

File Contents

# Content
1 % temporary preamble
2
3 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4
5 \documentclass{seminar}
6 \usepackage{color}
7
8 \usepackage{amsmath}
9 \usepackage{amssymb}
10 \usepackage{wrapfig}
11 \usepackage{epsf}
12 \usepackage{jurabib}
13
14 % ----------------------
15 % | Title |
16 % ----------------------
17
18 \title{A Mezzoscale Model for Phospholipid MD Simulations}
19
20 \author{Matthew A. Meineke\\
21 Department of Chemistry and Biochemistry\\
22 University of Notre Dame\\
23 Notre Dame, Indiana 46556}
24
25 \date{\today}
26
27 %-------------------------------------------------------------------
28 % Begin Document
29
30 \begin{document}
31
32 \maketitle
33
34 \bibliography{canidacy_slides}
35 \bibliographystyle{jurabib}
36
37
38
39
40
41 % Slide 1
42 \begin{slide} {Talk Outline}
43 \begin{itemize}
44
45 \item Discussion of the research motivation and goals
46
47 \item Methodology
48
49 \item Discussion of current research and preliminary results
50
51 \item Future research
52
53 \end{itemize}
54 \end{slide}
55
56
57 % Slide 2
58
59 \begin{slide}{Motivation A: Long Length Scales}
60
61
62
63 \begin{wrapfigure}{r}{45mm}
64
65 \epsfxsize=45mm
66 \epsfbox{ripple.epsi}
67
68 \end{wrapfigure}
69
70 Ripple phase:
71
72 \begin{itemize}
73
74 \item
75 The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
76 to fluid phase.
77
78 \item
79 periodicity of 100 - 200 $\mbox{\AA}$\footcite{Berne90}
80
81 \end{itemize}
82 \end{slide}
83
84
85
86
87
88
89 \begin{slide}{Motivation}
90
91 There is a strong need in phospholipid bilayer simulations for the
92 capability to simulate both long time and length scales. Consider the
93 following:
94
95 \begin{itemize}
96
97 \item Drug diffusion
98 \begin{itemize}
99 \item Some drug molecules may spend an appreciable time in the
100 membrane. Long time scale dynamics are needed to observe and
101 characterize their actions.
102 \end{itemize}
103
104 \item Ripple phase
105 \begin{itemize}
106 \item Between the bilayer gel and fluid phase there exists a ripple
107 phase. This phase has a period of about 100 - 200 $\mbox{\AA}$.
108 \end{itemize}
109
110 \item Bilayer formation dynamics
111 \begin{itemize}
112 \item Initial simulations show that bilayers can take upwards of
113 20 ns to form completely.
114 \end{itemize}
115
116 \end{itemize}
117 \end{slide}
118
119
120 % Slide 4
121
122 \begin{slide}{Length Scale Simplification}
123 \begin{itemize}
124
125 \item
126 Replace any charged interactions of the system with dipoles.
127
128 \begin{itemize}
129 \item Allows for computational scaling approximately by $N$ for
130 dipole-dipole interactions.
131 \item In contrast, the Ewald sum scales approximately by $N \log N$.
132 \end{itemize}
133
134 \item
135 Use unified models for the water and the lipid chain.
136
137 \begin{itemize}
138 \item Drastically reduces the number of atoms to simulate.
139 \item Number of water interactions alone reduced by $\frac{1}{3}$.
140 \end{itemize}
141 \end{itemize}
142 \end{slide}
143
144
145 % Slide 5
146
147 \begin{slide}{Time Scale Simplification}
148 \begin{itemize}
149
150 \item
151 No explicit hydrogens
152
153 \begin{itemize}
154 \item Hydrogen bond vibration is normally one of the fastest time
155 events in a simulation.
156 \end{itemize}
157
158 \item
159 Constrain all bonds to be of fixed length.
160
161 \begin{itemize}
162 \item As with the hydrogens, bond vibrations are the fastest motion in
163 a simulation
164 \end{itemize}
165
166 \item
167 Allows time steps of up to 3 fs with the current integrator.
168
169 \end{itemize}
170 \end{slide}
171
172
173 % Slide 6
174 \begin{slide}{Molecular Dynamics}
175
176 All of our simulations will be carried out using molecular
177 dynamics. This involves solving Newton's equations of motion using
178 the classical \emph{Hamiltonian} as follows:
179
180 \begin{equation}
181 H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
182 \end{equation}
183
184 Here $T(\vec{p})$ is the kinetic energy of the system which is a
185 function of momentum. In Cartesian space, $T(\vec{p})$ can be
186 written as:
187
188 \begin{equation}
189 T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
190 \end{equation}
191
192 \end{slide}
193
194
195 % Slide 7
196 \begin{slide}{The Potential}
197
198 The main part of the simulation is then the calculation of forces from
199 the potential energy.
200
201 \begin{equation}
202 \vec{F}(\vec{q}) = - \nabla V(\vec{q})
203 \end{equation}
204
205 The potential itself is made of several parts.
206
207 \begin{equation}
208 V_{tot} =
209 \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
210 \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
211 \end{equation}
212
213 Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
214 the bond, bend, and torsion potentials, and the non-bonded
215 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
216 lenard-jones, dipole-dipole, and sticky potential interactions.
217
218 \end{slide}
219
220
221 % Slide 8
222
223 \begin{slide}{Soft Sticky Dipole Model}
224
225 The Soft-Sticky model for water is a reduced model.
226
227 \begin{itemize}
228
229 \item
230 The model is represented by a single point mass at the water's center
231 of mass.
232
233 \item
234 The point mass contains a fixed dipole of 2.35 D pointing from the
235 oxygens toward the hydrogens.
236
237 \end{itemize}
238
239 It's potential is as follows:
240
241 \begin{equation}
242 V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
243 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
244 \end{equation}
245 \end{slide}
246
247 % Slide 8b
248
249 \begin{slide}{SSD Diagram}
250
251 \begin{center}
252 \begin{figure}
253 \epsfxsize=50mm
254 \epsfbox{ssd.epsi}
255 \end{figure}
256 \end{center}
257
258 A Diagram of the SSD model.
259 \end{slide}
260
261 % Slide 9
262 \begin{slide}{Hydrogen Bonding in SSD}
263
264 It is important to note that SSD has a potential specifically to
265 recreate the hydrogen bonding network of water.
266
267
268 ICE SSD
269
270 ICE point Dipole
271
272
273 The importance of the hydrogen bond network is it's significant
274 contribution to the hydrophobic driving force of bilayer formation.
275 \end{slide}
276
277
278 % Slide 10
279
280 \begin{slide}{The Lipid Model}
281
282 To eliminate the need for charge-charge interactions, our lipid model
283 replaces the phospholipid head group with a single large head group
284 atom containing a freely oriented dipole. The tail is a simple alkane chain.
285
286 Lipid Properties:
287 \begin{itemize}
288 \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$
289 \item $m_{\text{HEAD}} = 196\ \text{amu}$
290 \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms
291 \begin{itemize}
292 \item Alkane forcefield parameters taken from TraPPE
293 \end{itemize}
294 \end{itemize}
295
296 \end{slide}
297
298
299 % Slide 11
300
301 \begin{slide}{Lipid Model}
302
303
304
305 \end{slide}
306
307
308 % Slide 12
309
310 \begin{slide}{Initial Runs: 25 Lipids in water}
311
312 \textbf{Simulation Parameters:}
313
314 \begin{itemize}
315
316 \item Starting Configuration:
317 \begin{itemize}
318 \item 25 lipid molecules arranged in a 5 x 5 square
319 \item square was surrounded by a sea of 1386 waters
320 \begin{itemize}
321 \item final water to lipid ratio was 55.4:1
322 \end{itemize}
323 \end{itemize}
324
325 \item Lipid had only a single saturated chain of 16 carbons
326
327 \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$
328
329 \item dt = 2.0 - 3.0 fs
330
331 \item T = 300 K
332
333 \item NVE ensemble
334
335 \item Periodic boundary conditions
336 \end{itemize}
337
338 \end{slide}
339
340
341 % Slide 13
342
343 \begin{slide}{5x5: Initial}
344
345 \begin{center}
346 \begin{figure}
347 \epsfxsize=50mm
348 \epsfbox{5x5-initial.eps}
349 \end{figure}
350 \end{center}
351
352 The initial configuration
353
354 \end{slide}
355
356 \begin{slide}{5x5: Final}
357
358 \begin{center}
359 \begin{figure}
360 \epsfxsize=60mm
361 \epsfbox{5x5-1.7ns.eps}
362 \end{figure}
363 \end{center}
364
365 The final configuration at 1.7 ns.
366
367 \end{slide}
368
369
370 % Slide 14
371
372 \begin{slide}{5x5: $g(r)$}
373
374 \begin{center}
375 \begin{figure}
376 \epsfxsize=60mm
377 \epsfbox{all5x5-HEAD-HEAD-gr.eps}
378 \end{figure}
379 \end{center}
380
381
382 \end{slide}
383
384 \begin{slide}{5x5: $g(r)$}
385
386 \begin{center}
387 \begin{figure}
388 \epsfxsize=60mm
389 \epsfbox{all5x5-HEAD-X-gr.eps}
390 \end{figure}
391 \end{center}
392
393
394 \end{slide}
395
396
397 % Slide 15
398
399 \begin{slide}{5x5: $\cos$ correlations}
400
401 \begin{center}
402 \begin{figure}
403 \epsfxsize=60mm
404 \epsfbox{all5x5-HEAD-HEAD-cr.eps}
405 \end{figure}
406 \end{center}
407
408 \end{slide}
409
410 \begin{slide}{5x5: $\cos$ correlations}
411
412 \begin{center}
413 \begin{figure}
414 \epsfxsize=60mm
415 \epsfbox{all5x5-HEAD-X-cr.eps}
416 \end{figure}
417 \end{center}
418
419 \end{slide}
420
421
422 % Slide 16
423
424 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
425
426 \textbf{Simulation Parameters:}
427
428 \begin{itemize}
429
430 \item Starting Configuration:
431 \begin{itemize}
432 \item 50 lipid molecules arranged randomly in a rectangular box
433 \item The box was then filled with 1384 waters
434 \begin{itemize}
435 \item final water to lipid ratio was 27:1
436 \end{itemize}
437 \end{itemize}
438
439 \item Lipid had only a single saturated chain of 16 carbons
440
441 \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
442
443 \item dt = 2.0 - 3.0 fs
444
445 \item T = 300 K
446
447 \item NVE ensemble
448
449 \item Periodic boundary conditions
450
451 \end{itemize}
452
453 \end{slide}
454
455
456 % Slide 17
457
458 \begin{slide}{R-50: Initial}
459
460 \begin{center}
461 \begin{figure}
462 \epsfxsize=100mm
463 \epsfbox{r50-initial.eps}
464 \end{figure}
465 \end{center}
466
467 The initial configuration
468
469 \end{slide}
470
471 \begin{slide}{R-50: Final}
472
473 \begin{center}
474 \begin{figure}
475 \epsfxsize=100mm
476 \epsfbox{r50-521ps.eps}
477 \end{figure}
478 \end{center}
479
480 The fianl configuration at 521 ps
481
482 \end{slide}
483
484
485 % Slide 18
486
487 \begin{slide}{R-50: $g(r)$}
488
489
490 \begin{center}
491 \begin{figure}
492 \epsfxsize=60mm
493 \epsfbox{r50-HEAD-HEAD-gr.eps}
494 \end{figure}
495 \end{center}
496
497 \end{slide}
498
499
500 \begin{slide}{R-50: $g(r)$}
501
502
503 \begin{center}
504 \begin{figure}
505 \epsfxsize=60mm
506 \epsfbox{r50-HEAD-X-gr.eps}
507 \end{figure}
508 \end{center}
509
510 \end{slide}
511
512
513 % Slide 19
514
515 \begin{slide}{R-50: $\cos$ correlations}
516
517
518 \begin{center}
519 \begin{figure}
520 \epsfxsize=60mm
521 \epsfbox{r50-HEAD-HEAD-cr.eps}
522 \end{figure}
523 \end{center}
524
525 \end{slide}
526
527 \begin{slide}{R-50: $\cos$ correlations}
528
529
530 \begin{center}
531 \begin{figure}
532 \epsfxsize=60mm
533 \epsfbox{r50-HEAD-X-cr.eps}
534 \end{figure}
535 \end{center}
536
537 \end{slide}
538
539
540 % Slide 20
541
542 \begin{slide}{Future Directions}
543
544 \begin{itemize}
545
546 \item
547 Simulation of a lipid with 2 chains, or perhaps expand the current
548 unified chain atoms to take up greater steric bulk.
549
550 \item
551 Incorporate constant pressure and constant temperature into the ensemble.
552
553 \item
554 Parrellize the code.
555
556 \end{itemize}
557 \end{slide}
558
559
560 % Slide 21
561
562 \begin{slide}{Acknowledgements}
563
564 \begin{itemize}
565
566 \item Dr. J. Daniel Gezelter
567 \item Christopher Fennel
568 \item Charles Vardeman
569 \item Teng Lin
570
571 \end{itemize}
572
573 Funding by:
574 \begin{itemize}
575 \item Dreyfus New Faculty Award
576 \end{itemize}
577
578 \end{slide}
579
580
581
582
583
584
585
586
587 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
588
589 \end{document}