ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 109
Committed: Fri Sep 13 16:22:46 2002 UTC (22 years ago) by mmeineke
Content type: application/x-tex
File size: 15784 byte(s)
Log Message:
added a bunch of igures

File Contents

# User Rev Content
1 mmeineke 49 % temporary preamble
2    
3 mmeineke 54 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4    
5 mmeineke 64 \documentclass[portrait]{seminar}
6 mmeineke 63 \usepackage[usenames,dvips]{pstcol}
7     \usepackage{semcolor}
8     \usepackage[dvips]{color}
9 mmeineke 69 \usepackage{graphicx}
10     \usepackage{subfigure}
11 mmeineke 49 \usepackage{amsmath}
12 mmeineke 52 \usepackage{amssymb}
13 mmeineke 62 \usepackage{wrapfig}
14 mmeineke 49 \usepackage{epsf}
15    
16 mmeineke 64 \usepackage[citefull=first, chicago, pages=always]{jurabib}
17 mmeineke 63
18    
19     \jurabibsetup{bibformat={tabular,ibidem,numbered}}
20     \centerslidesfalse
21    
22     % -----------------------------
23     % | preamble + macros and crap |
24     % -----------------------------
25    
26    
27     % Basic Color Defs used within this file
28     \definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue
29     \definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue
30     \definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red
31     \definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue
32    
33     %\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color
34    
35     % Change itemize environment to use funky color bullets
36     \renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}}
37     \renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}}
38     \renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}}
39    
40    
41    
42    
43    
44     % Input corrections to 'seminar'
45    
46     \input{seminar.bug}
47     \input{seminar.bg2}
48    
49     % Slides parameters: general setup
50    
51     \centerslidesfalse % Text not centered
52     \slideframe{none} % No frame borders
53     \raggedslides[2em] % Semi-ragged-right text
54     \slidestyle{empty} % No labels
55     \rotateheaderstrue % Header and slide orientation synchronized
56    
57     % Slides dimensions and header placement
58    
59 mmeineke 64 \addtolength{\slidewidth}{10mm}
60 mmeineke 63 \addtolength{\slideheight}{10mm}
61     \renewcommand{\slideleftmargin}{10mm}
62     \renewcommand{\sliderightmargin}{10mm}
63     \renewcommand{\slidetopmargin}{10mm}
64     \renewcommand{\slidebottommargin}{15mm}
65    
66     % Landscape printing sequence (for dvips)
67    
68     \renewcommand{\printlandscape}{\special{landscape}}
69    
70    
71     % My-itemize environment (3 levels): essentially not indented from
72     % the left margin. New second- and third-level item markers.
73    
74     \newenvironment{myt}
75     {\begin{list}{$\bullet$}%
76     {\setlength{\labelwidth}{9pt}%
77     \setlength{\labelsep}{4pt}%
78     \setlength{\leftmargin}{13pt}%
79     \setlength{\topsep}{\parskip}%
80     \setlength{\partopsep}{\parskip}%
81     \setlength{\itemsep}{0pt}}}%
82     {\end{list}}
83    
84    
85     \newenvironment{myt1}
86     {\begin{list}{$\star$}%
87     {\setlength{\labelwidth}{9pt}%
88     \setlength{\labelsep}{4pt}%
89     \setlength{\leftmargin}{13pt}%
90     \setlength{\topsep}{0pt}%
91     \setlength{\partopsep}{\parskip}%
92     \setlength{\itemsep}{0pt}}}%
93     {\end{list}}
94    
95     \newenvironment{myt2}
96     {\begin{list}{$\rightsquigarrow$}%
97     {\setlength{\labelwidth}{9pt}%
98     \setlength{\labelsep}{4pt}%
99     \setlength{\leftmargin}{13pt}%
100     \setlength{\topsep}{0pt}%
101     \setlength{\partopsep}{\parskip}%
102     \setlength{\itemsep}{0pt}}}%
103     {\end{list}}
104    
105    
106     % Colors
107    
108     \definecolor{Red}{rgb}{1,0,0} % Text
109     \definecolor{Green}{rgb}{0,1,0}
110     \definecolor{Blue}{rgb}{0,0,1}
111     \definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders
112     \definecolor{Blue2}{rgb}{0,0,0.93}
113     \definecolor{Gold}{rgb}{1,0.84,0}
114     %\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background
115     \definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page
116     \definecolor{Green3}{rgb}{0,0.8,0}
117     \definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31}
118     \definecolor{Purple2}{rgb}{0.57,0.17,0.93}
119    
120     % Page and slides parameters
121    
122     \newpagestyle{slidot}
123     {\color{Gold}\rule{10mm}{1.5pt}%
124     \lower.22ex\hbox{%
125     \textcolor{Blue2}{~~University of Notre Dame~~}}%
126     \leavevmode\leaders\hrule height1.5pt\hfil}
127     {\color{Gold}\rule{5mm}{1.5pt}%
128     \lower.22ex\hbox{%
129     \textcolor{SaddleBrown}{~~Matthew Meineke~~}}%
130     \leavevmode\leaders\hrule height1.5pt\hfil%
131     \lower.32ex\hbox{%
132     \textcolor{Blue2}{~~\thepage~~}}%
133     \rule{5mm}{1.5pt}}
134    
135     \pagestyle{slidot}
136    
137    
138    
139    
140     % A couple of new counters for slide sequences
141    
142     \newcounter{sliq}
143     \newcounter{slisup}
144     \renewcommand{\thesliq}{\Roman{sliq}}
145     \renewcommand{\theslisup}{\Roman{slisup}}
146    
147     % Set the background color of every slide
148    
149     \special{!userdict begin /bop-hook {gsave
150 mmeineke 64 1.0 1.0 1.0 setrgbcolor clippath fill
151 mmeineke 63 grestore} def end
152     }
153    
154     % And here we are...
155    
156     \setcounter{slide}{-1}
157     %\includeonly{slide10}
158    
159    
160 mmeineke 64 % setup the jurabib style
161 mmeineke 63
162 mmeineke 64 \renewcommand{\jbbtasep}{; } % bta = between two authors sep
163     \renewcommand{\jbbfsasep}{; } % bfsa = between first and second author sep
164     \renewcommand{\jbbstasep}{; } % bsta = between second and third author sep
165     %\renewcommand{\bibansep}{. } % seperator after name
166 mmeineke 63
167 mmeineke 64 \renewcommand{\bibtfont}{\textit} % change book title to italics
168     \renewcommand{\bibjtfont}{\textit} % change journal title to italics
169     \renewcommand{\bibapifont}[1]{} % gets rid of the article title in citation
170 mmeineke 63
171    
172 mmeineke 69 \renewcommand{\theslidefootnote}{\arabic{footnote}}
173 mmeineke 64
174    
175    
176 mmeineke 49 % ----------------------
177     % | Title |
178     % ----------------------
179    
180 mmeineke 62 \title{A Mezzoscale Model for Phospholipid MD Simulations}
181 mmeineke 49
182     \author{Matthew A. Meineke\\
183 mmeineke 63 Department of Chemistry and Biochemistry\\
184 mmeineke 49 University of Notre Dame\\
185     Notre Dame, Indiana 46556}
186    
187     \date{\today}
188    
189     %-------------------------------------------------------------------
190     % Begin Document
191    
192     \begin{document}
193 mmeineke 62
194 mmeineke 63 %\maketitle
195 mmeineke 49
196    
197    
198 mmeineke 62
199    
200 mmeineke 63 \nobibliography{canidacy_slides}
201     \bibliographystyle{jurabib}
202 mmeineke 62
203 mmeineke 63
204     % Slide 0 Title slide
205     \begin{slide}
206     \begin{center}
207     \bfseries
208     \fontsize{24pt}{30pt}\selectfont \color{Black}
209 mmeineke 109 A Mesoscale Model for Phospholipid Simulations \par
210 mmeineke 63 \fontsize{16pt}{20pt}\selectfont \color{Green3}
211     Matthew A. Meineke\par
212     \fontsize{12pt}{15pt}\selectfont \color{Purple2}
213 mmeineke 80 Department of Chemistry and Biochemistry \par
214 mmeineke 63 University of Notre Dame \par
215     Notre Dame, IN 46556 \par
216     \fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par
217     \end{center}
218     \end{slide}
219    
220 mmeineke 64
221 mmeineke 49 % Slide 1
222 mmeineke 64 \begin{slide} {\LARGE Talk Outline}
223 mmeineke 49 \begin{itemize}
224    
225     \item Discussion of the research motivation and goals
226    
227     \item Methodology
228    
229     \item Discussion of current research and preliminary results
230    
231     \item Future research
232    
233     \end{itemize}
234     \end{slide}
235    
236    
237     % Slide 2
238    
239 mmeineke 63 \begin{slide}
240 mmeineke 62
241 mmeineke 64 \centerline{\LARGE Motivation A: Long Length Scales}
242    
243 mmeineke 63 \begin{wrapfigure}{r}{60mm}
244 mmeineke 62
245 mmeineke 63 \epsfxsize=45mm
246     \epsfbox{ripple.epsi}
247 mmeineke 62
248 mmeineke 63 \end{wrapfigure}
249 mmeineke 62
250 mmeineke 63 \mbox{}
251 mmeineke 62 Ripple phase:
252     \begin{itemize}
253    
254 mmeineke 63 \item
255 mmeineke 62 The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
256     to fluid phase.
257    
258 mmeineke 63 \item
259 mmeineke 64 Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Cevc87}
260 mmeineke 62
261 mmeineke 64 \item
262     Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$
263     on a side.\footcite{Venable93}\footcite{Heller93}
264    
265 mmeineke 62 \end{itemize}
266 mmeineke 64 \vspace{10mm}
267 mmeineke 62 \end{slide}
268    
269    
270 mmeineke 64 \begin{slide}{\LARGE Motivation B: Long Time Scales}
271 mmeineke 62
272 mmeineke 64 \begin{itemize}
273 mmeineke 62
274 mmeineke 64 \item
275 mmeineke 80 Drug Diffusion
276 mmeineke 64 \begin{itemize}
277     \item
278 mmeineke 80 Some drug molecules may spend appreciable amounts of time in the
279 mmeineke 64 membrane
280 mmeineke 62
281 mmeineke 64 \item
282 mmeineke 80 Long time scale dynamics are need to observe and characterize their
283 mmeineke 64 actions
284     \end{itemize}
285 mmeineke 62
286 mmeineke 64 \item
287     Bilayer Formation Dynamics
288     \begin{itemize}
289     \item
290 mmeineke 109 Current lipid simulations indicate\footcite{Marrink01}:
291     \begin{itemize}
292     \item Aggregation can happen as quickly as 200 ps
293    
294     \item Bilayers can take up to 20 ns to form completely
295     \end{itemize}
296    
297 mmeineke 64 \end{itemize}
298     \end{itemize}
299     \end{slide}
300 mmeineke 54
301    
302 mmeineke 64 % Slide 4
303 mmeineke 49
304 mmeineke 64 \begin{slide}{\LARGE Length Scale Simplification I}
305 mmeineke 49
306    
307 mmeineke 109 Replace charge distriibutions of the system with dipoles.
308 mmeineke 49
309 mmeineke 64 \begin{itemize}
310     \item Allows for computational scaling approximately by $N$ for
311     dipole-dipole interactions.
312     \begin{itemize}
313     \item Relatively short range, $\frac{1}{r^3}$, interactions allow
314     the application of computational simplification algorithms,
315     ie. neighbor lists.
316     \end{itemize}
317    
318     \item In contrast, the Ewald sum, needed for calculating charge - charge
319     interactions, scales approximately by $N \log N$.
320 mmeineke 49 \end{itemize}
321 mmeineke 109
322     \begin{equation}
323     V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
324     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
325     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
326     -
327     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
328     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
329     {r^{5}_{ij}} \biggr]
330     \end{equation}
331    
332     \begin{center}
333     \vspace{4mm}
334     vs.
335     \end{center}
336    
337     \begin{equation}
338     V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
339     {4\pi\epsilon_{0} r_{ij}}
340     \end{equation}
341    
342 mmeineke 49 \end{slide}
343    
344 mmeineke 64 \begin{slide}{\LARGE Length Scale Simplification II}
345 mmeineke 49
346 mmeineke 64 Use unified models for the water and the lipid chain.
347 mmeineke 49
348     \begin{itemize}
349 mmeineke 64 \item
350 mmeineke 69 Drastically reduces the number of atoms and interactions to simulate.
351 mmeineke 49
352 mmeineke 64 \end{itemize}
353 mmeineke 49
354    
355 mmeineke 69
356 mmeineke 65 \begin{figure}
357 mmeineke 69 %\epsfxsize=30mm
358     %\leavevmode
359     \begin{center}
360     \includegraphics[width=50mm,angle=-90]{reduction.epsi}
361     \end{center}
362 mmeineke 65 \end{figure}
363 mmeineke 64
364 mmeineke 69
365 mmeineke 49 \end{slide}
366    
367    
368     % Slide 5
369    
370     \begin{slide}{Time Scale Simplification}
371     \begin{itemize}
372     \item
373     Constrain all bonds to be of fixed length.
374    
375 mmeineke 63 \begin{itemize}
376 mmeineke 69 \item bond vibrations are the fastest motion in
377 mmeineke 63 a simulation
378     \end{itemize}
379 mmeineke 49
380     \item
381 mmeineke 69 Allows time steps of up to 3 fs with the current integrator. In
382 mmeineke 109 contrast, a time step of 1 fs is usually required for energy conservation.
383 mmeineke 49
384     \end{itemize}
385     \end{slide}
386    
387 mmeineke 51 % Slide 8
388 mmeineke 49
389 mmeineke 69 \begin{slide}{Soft Sticky Dipole Model\footcite{Liu96}}
390 mmeineke 49
391 mmeineke 69 \begin{figure}
392     \begin{center}
393     \includegraphics[width=40mm]{ssd.epsi}
394     \end{center}
395     \end{figure}
396 mmeineke 49
397    
398 mmeineke 52 It's potential is as follows:
399    
400     \begin{equation}
401 mmeineke 69 V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
402 mmeineke 63 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
403 mmeineke 52 \end{equation}
404     \end{slide}
405    
406    
407     % Slide 9
408     \begin{slide}{Hydrogen Bonding in SSD}
409    
410 mmeineke 69 The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$ recreates
411     the hydrogen bonding network of water.
412 mmeineke 52
413 mmeineke 54
414 mmeineke 69 \begin{figure}
415     \begin{center}
416     \mbox{%
417     \subfigure[SSD relaxed on a diamond lattice]{%
418     \mbox{\includegraphics[angle=-90,width=55mm]{ssd_ice.epsi}}}%
419     \hspace{4mm}
420     \subfigure[Stockmayer spheres relaxed on a diamond lattice]{%
421     \mbox{\includegraphics[angle=-90,width=55mm]{dipole_ice.epsi}}}%
422     }
423 mmeineke 52
424 mmeineke 69 \end{center}
425     \end{figure}
426 mmeineke 52
427     \end{slide}
428    
429    
430     % Slide 10
431    
432     \begin{slide}{The Lipid Model}
433    
434 mmeineke 78 \begin{figure}
435     \begin{center}
436 mmeineke 53
437 mmeineke 78 \includegraphics[width=40mm,angle=-90]{lipidModel.epsi}
438    
439     \end{center}
440     \end{figure}
441    
442     \begin{equation}
443     V_{\mbox{lipid}} = \overbrace{%
444     V_{\mbox{bend}}(\theta_{ijk}) + V_{\mbox{tors.}}(\phi_{ijkl})%
445     }^{bonded}
446     + \overbrace{%
447     V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})%
448     }^{non-bonded}
449     \end{equation}
450    
451 mmeineke 53 \begin{itemize}
452 mmeineke 78 \item
453     Tail forcefield parameters taken from TraPPE\footcite{Siepmann1998}
454 mmeineke 53 \end{itemize}
455    
456     \end{slide}
457    
458    
459    
460     % Slide 12
461 mmeineke 52
462     \begin{slide}{Initial Runs: 25 Lipids in water}
463    
464 mmeineke 76 \begin{wrapfigure}{r}{60mm}
465    
466     \includegraphics[width=55mm]{5x5-initial.eps}
467    
468     \end{wrapfigure}
469    
470 mmeineke 53 \textbf{Simulation Parameters:}
471 mmeineke 52
472 mmeineke 53 \begin{itemize}
473    
474 mmeineke 76 \item $N_{\mbox{lipids}} = 25$
475 mmeineke 53
476 mmeineke 76 \item $N_{\mbox{H}_{2}\mbox{O}} = 1386$
477    
478 mmeineke 109 \item Water to lipid ratio of 55.4:1 or 70% wt.
479 mmeineke 76
480 mmeineke 53 \item Lipid had only a single saturated chain of 16 carbons
481    
482 mmeineke 76 \item Box Size: 34.5~$\mbox{\AA}$~x~39.4~$\mbox{\AA}$~x~39.4~$\mbox{\AA}$
483 mmeineke 53
484     \item T = 300 K
485    
486     \item NVE ensemble
487    
488     \item Periodic boundary conditions
489     \end{itemize}
490    
491 mmeineke 52 \end{slide}
492    
493 mmeineke 76 \begin{slide}{5x5: Final}
494 mmeineke 52
495    
496 mmeineke 76 \begin{figure}
497 mmeineke 54 \begin{center}
498 mmeineke 87 \includegraphics[angle=-90,width=75mm]{5x5-3.6ns.epsi}
499 mmeineke 76 \end{center}
500 mmeineke 54 \end{figure}
501 mmeineke 52
502 mmeineke 54 \begin{center}
503 mmeineke 109 The configuration at 3.6 ns.
504 mmeineke 54 \end{center}
505    
506     \end{slide}
507    
508    
509 mmeineke 53 % Slide 14
510 mmeineke 52
511 mmeineke 87 \begin{slide}{5x5: Head to Head $g(r)$}
512 mmeineke 52
513 mmeineke 54 \begin{figure}
514 mmeineke 87 \begin{center}
515     \includegraphics[width=55mm,angle=-90]{all5x5-HEAD-HEAD.GofR.eps}
516     \end{center}
517 mmeineke 54 \end{figure}
518 mmeineke 52
519 mmeineke 87 \begin{equation}
520 mmeineke 109 g(r) = \frac{V}{N(N-1)}\langle \sum_{i} \sum_{j \neq i} \delta(|\mathbf{r}
521     - \mathbf{r}_{ij}|) \rangle
522 mmeineke 87 \end{equation}
523 mmeineke 52
524 mmeineke 76
525 mmeineke 54 \end{slide}
526 mmeineke 52
527 mmeineke 87 \begin{slide}{5x5: Head to Water $g(r)$}
528 mmeineke 54
529 mmeineke 76
530 mmeineke 54 \begin{figure}
531 mmeineke 87 \begin{center}
532     \includegraphics[width=70mm,angle=-90]{all5x5-HEAD-X.GofR.eps}
533     \end{center}
534 mmeineke 54 \end{figure}
535    
536 mmeineke 52 \end{slide}
537    
538    
539 mmeineke 53 % Slide 15
540 mmeineke 52
541 mmeineke 87 \begin{slide}{5x5: Head to Head $\cos$ correlation}
542 mmeineke 52
543 mmeineke 54 \begin{figure}
544 mmeineke 87 \begin{center}
545     \includegraphics[width=70mm,angle=-90]{all5x5-HEAD-HEAD.cosCorr.eps}
546     \end{center}
547 mmeineke 54 \end{figure}
548 mmeineke 52
549     \end{slide}
550    
551 mmeineke 87 \begin{slide}{5x5: Head to Water $\cos$ correlation}
552 mmeineke 52
553 mmeineke 54 \begin{figure}
554 mmeineke 87 \begin{center}
555     \includegraphics[width=70mm,angle=-90]{all5x5-HEAD-X.cosCorr.eps}
556     \end{center}
557 mmeineke 54 \end{figure}
558    
559     \end{slide}
560    
561    
562 mmeineke 53 % Slide 16
563 mmeineke 52
564 mmeineke 53 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
565 mmeineke 52
566 mmeineke 79 \begin{wrapfigure}{r}{40mm}
567 mmeineke 78
568 mmeineke 79 \includegraphics[angle=-90,width=35mm]{r50-initial.eps}
569    
570     \end{wrapfigure}
571    
572 mmeineke 53 \textbf{Simulation Parameters:}
573 mmeineke 52
574 mmeineke 53 \begin{itemize}
575    
576 mmeineke 79 \item $N_{\mbox{lipids}} = 50$
577 mmeineke 53
578 mmeineke 79 \item $N_{\mbox{H}_{2}\mbox{O}} = 1384$
579    
580 mmeineke 109 \item Water to lipid ratio of 27:1 or 54\% wt.
581 mmeineke 79
582 mmeineke 53 \item Lipid had only a single saturated chain of 16 carbons
583    
584     \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
585    
586     \item T = 300 K
587    
588     \item NVE ensemble
589    
590 mmeineke 63 \item Periodic boundary conditions
591 mmeineke 53
592     \end{itemize}
593    
594 mmeineke 52 \end{slide}
595    
596 mmeineke 79 \begin{slide}{R-50: Final}
597 mmeineke 52
598    
599 mmeineke 76 \begin{figure}
600 mmeineke 54 \begin{center}
601 mmeineke 87 \includegraphics[angle=-90,width=110mm]{r50_1.3ns.epsi}
602 mmeineke 76 \end{center}
603 mmeineke 54 \end{figure}
604 mmeineke 52
605 mmeineke 54 \begin{center}
606 mmeineke 109 The configuration at 1.3 ns
607 mmeineke 54 \end{center}
608    
609     \end{slide}
610    
611    
612 mmeineke 53 % Slide 18
613 mmeineke 52
614 mmeineke 87 \begin{slide}{R-50: Head to Head $g(r)$}
615 mmeineke 52
616    
617 mmeineke 54 \begin{figure}
618 mmeineke 87 \begin{center}
619     \includegraphics[width=70mm,angle=-90]{r50-HEAD-HEAD.GofR.eps}
620     \end{center}
621 mmeineke 54 \end{figure}
622 mmeineke 52
623 mmeineke 54 \end{slide}
624 mmeineke 52
625 mmeineke 54
626 mmeineke 87 \begin{slide}{R-50: Head to Water $g(r)$}
627 mmeineke 54
628    
629     \begin{figure}
630 mmeineke 87 \begin{center}
631     \includegraphics[width=70mm,angle=-90]{r50-HEAD-X.GofR.eps}
632     \end{center}
633 mmeineke 54 \end{figure}
634    
635 mmeineke 52 \end{slide}
636    
637    
638 mmeineke 53 % Slide 19
639 mmeineke 52
640 mmeineke 87 \begin{slide}{R-50: Head to Head $\cos$ correlation}
641 mmeineke 52
642    
643 mmeineke 54 \begin{figure}
644 mmeineke 87 \begin{center}
645     \includegraphics[width=70mm,angle=-90]{r50-HEAD-HEAD.cosCorr.eps}
646     \end{center}
647 mmeineke 54 \end{figure}
648    
649 mmeineke 52 \end{slide}
650    
651 mmeineke 87 \begin{slide}{R-50: Head to Water $\cos$ correlation}
652 mmeineke 52
653 mmeineke 54 \begin{figure}
654 mmeineke 87 \begin{center}
655     \includegraphics[width=70mm,angle=-90]{r50-HEAD-X.cosCorr.eps}
656     \end{center}
657 mmeineke 54 \end{figure}
658    
659     \end{slide}
660    
661    
662 mmeineke 53 % Slide 20
663 mmeineke 52
664     \begin{slide}{Future Directions}
665    
666 mmeineke 53 \begin{itemize}
667 mmeineke 52
668 mmeineke 63 \item
669 mmeineke 53 Simulation of a lipid with 2 chains, or perhaps expand the current
670     unified chain atoms to take up greater steric bulk.
671    
672 mmeineke 63 \item
673 mmeineke 53 Incorporate constant pressure and constant temperature into the ensemble.
674 mmeineke 80 \begin{itemize}
675     \item Start initial configuration in the gas phase, and
676     compress the system to STP.
677     \end{itemize}
678 mmeineke 109
679 mmeineke 53 \item
680 mmeineke 80 Parallelize the code.
681 mmeineke 53
682 mmeineke 109 \item
683     Explore and map the phase diagram for our model.
684    
685     \item
686     Observe how modification of our model might affect the phase diagram.
687    
688     \item
689     Add biologicaly interesting molecules to the system and observe
690     transport properties.
691    
692 mmeineke 53 \end{itemize}
693 mmeineke 52 \end{slide}
694    
695    
696 mmeineke 53 % Slide 21
697 mmeineke 52
698     \begin{slide}{Acknowledgements}
699    
700 mmeineke 53 \begin{itemize}
701 mmeineke 52
702 mmeineke 53 \item Dr. J. Daniel Gezelter
703 mmeineke 80 \item Christopher Fennell
704 mmeineke 53 \item Charles Vardeman
705     \item Teng Lin
706 mmeineke 64 \item Megan Sprauge
707     \item Patrick Conforti
708     \item Dan Combest
709 mmeineke 52
710 mmeineke 53 \end{itemize}
711    
712     Funding by:
713     \begin{itemize}
714 mmeineke 80 \item NSF
715 mmeineke 53 \end{itemize}
716    
717 mmeineke 52 \end{slide}
718    
719    
720 mmeineke 109 %%%%%%%%%%%%%%%%%%%%%%%%%% Auxillary Slides %%%%%%%%%%%%%%%%%%%%%%%%
721 mmeineke 52
722 mmeineke 109 \begin{slide}{Sticky Potential I}
723 mmeineke 52
724 mmeineke 109 \begin{equation}
725     V_{s\!p}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
726     v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
727     \boldsymbol{\Omega}_{j})
728     +
729     s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
730     \boldsymbol{\Omega}_{j})]
731     \end{equation}
732     where
733     \begin{equation}
734     w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
735     \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
736     + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
737     \end{equation}
738     and $w^{x}_{ij}$ is a correction function for when $\theta_{ij}$ is
739     $0^{\circ}$ or $180^{\circ}$. Its form is:
740     \begin{equation}
741     \begin{split}
742     w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) &=
743     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
744     &\phantom{=} + (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
745     \end{split}
746     \end{equation}
747 mmeineke 52
748    
749 mmeineke 109 \end{slide}
750 mmeineke 52
751    
752 mmeineke 109
753    
754    
755 mmeineke 49 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
756    
757     \end{document}