ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 50
Committed: Fri Jul 26 20:51:52 2002 UTC (21 years, 11 months ago) by mmeineke
Content type: application/x-tex
File size: 3937 byte(s)
Log Message:
This commit was generated by cvs2svn to compensate for changes in r49, which
included commits to RCS files with non-trunk default branches.

File Contents

# User Rev Content
1 mmeineke 49 % temporary preamble
2    
3     \documentclass{seminar}
4    
5     \usepackage{amsmath}
6     \usepackage{epsf}
7    
8     % ----------------------
9     % | Title |
10     % ----------------------
11    
12     \title{A Coarse Grain Model for Phospholipid MD Simulations}
13    
14     \author{Matthew A. Meineke\\
15     Department of Chemistry and Biochemistry\\
16     University of Notre Dame\\
17     Notre Dame, Indiana 46556}
18    
19     \date{\today}
20    
21     %-------------------------------------------------------------------
22     % Begin Document
23    
24     \begin{document}
25     \maketitle
26    
27    
28    
29     % Slide 1
30     \begin{slide} {Talk Outline}
31     \begin{itemize}
32    
33     \item Discussion of the research motivation and goals
34    
35     \item Methodology
36    
37     \item Discussion of current research and preliminary results
38    
39     \item Future research
40    
41     \end{itemize}
42     \end{slide}
43    
44    
45     % Slide 2
46    
47     \begin{slide}{Motivation}
48     \begin{itemize}
49    
50     % make sure to come back and talk about the need for long time and length
51     % scales
52    
53     \item Drug diffusion
54    
55     \item ripple phase
56    
57     \item bilayer formation dynamics
58    
59     \end{itemize}
60     \end{slide}
61    
62    
63     % Slide 3
64    
65     \begin{slide}{Research Goals}
66     \begin{itemize}
67    
68     \item
69     To develop a coarse-grain simulation model with which to simulate
70     phospholipid bilayers.
71    
72     \item To use the model to observe:
73    
74     \begin{itemize}
75    
76     \item Phospholipid properties with long length scales
77    
78     \begin{itemize}
79     \item The ripple phase.
80     \end{itemize}
81    
82     \item Long time scale dynamics of biological relevance
83    
84     \begin{itemize}
85     \item Trans-membrane diffusion of drug molecules
86     \end{itemize}
87     \end{itemize}
88     \end{itemize}
89     \end{slide}
90    
91    
92     % Slide 4
93    
94     \begin{slide}{Length Scale Simplification}
95     \begin{itemize}
96    
97     \item
98     Replace any charged interactions of the system with dipoles.
99    
100     \begin{itemize}
101     \item Allows for computational scaling aproximately by $N$ for
102     dipole-dipole interactions.
103     \item In contrast, the Ewald sum scales aproximately by $N \log N$.
104     \end{itemize}
105    
106     \item
107     Use unified models for the water and the lipid chain.
108    
109     \begin{itemize}
110     \item Drastically reduces the number of atoms to simulate.
111     \item Number of water interactions alone reduced by $\frac{1}{3}$.
112     \end{itemize}
113     \end{itemize}
114     \end{slide}
115    
116    
117     % Slide 5
118    
119     \begin{slide}{Time Scale Simplification}
120     \begin{itemize}
121    
122     \item
123     No explicit hydrogens
124    
125     \begin{itemize}
126     \item Hydrogen bond vibration is normally one of the fastest time
127     events in a simulation.
128     \end{itemize}
129    
130     \item
131     Constrain all bonds to be of fixed length.
132    
133     \begin{itemize}
134     \item As with the hydrgoens, bond vibrations are the fastest motion in
135     asimulation
136     \end{itemize}
137    
138     \item
139     Allows time steps of up to 3 fs with the current integrator.
140    
141     \end{itemize}
142     \end{slide}
143    
144    
145     % Slide 6
146     \begin{slide}{Molecular Dynamics}
147    
148     All of our simulations will be carried out using molcular
149     dymnamics. This involves solving Newton's equations of motion using
150     the classical \emph{Hamiltonian} as follows:
151    
152     \begin{equation}
153     H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
154     \end{equation}
155    
156     Here $T(\vec{p})$ is the kinetic energy of the system which is a
157     function of momentum. In cartesian space, $T(\vec{p})$ can be
158     written as:
159    
160     \begin{equation}
161     T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
162     \end{equation}
163    
164     \end{slide}
165    
166    
167     % Slide 7
168     \begin{slide}{The Potential}
169    
170     The main part of the simulation is then the calculation of forces from
171     the potential energy.
172    
173     \begin{equation}
174     \vec{F}(\vec{q}) = - \nabla V(\vec{q})
175     \end{equation}
176    
177     The potential itself is made of several parts.
178    
179     \begin{equation}
180     V_{tot} =
181     \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
182     \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
183     \end{equation}
184    
185     Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
186     the bond, bend, and torsion potentials, and the non-bonded
187     interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!s\!d}$ are the
188     lenard-jones, dipole-dipole, and soft sticky dipole interactions.
189    
190     \end{slide}
191    
192    
193    
194    
195    
196    
197    
198     %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
199    
200     \end{document}