ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 52
Committed: Sat Jul 27 18:12:14 2002 UTC (21 years, 11 months ago) by mmeineke
Content type: application/x-tex
File size: 6290 byte(s)
Log Message:
Skeletons of most every slide

File Contents

# User Rev Content
1 mmeineke 49 % temporary preamble
2    
3     \documentclass{seminar}
4 mmeineke 52 \usepackage{color}
5 mmeineke 49 \usepackage{amsmath}
6 mmeineke 52 \usepackage{amssymb}
7 mmeineke 49 \usepackage{epsf}
8    
9     % ----------------------
10     % | Title |
11     % ----------------------
12    
13     \title{A Coarse Grain Model for Phospholipid MD Simulations}
14    
15     \author{Matthew A. Meineke\\
16     Department of Chemistry and Biochemistry\\
17     University of Notre Dame\\
18     Notre Dame, Indiana 46556}
19    
20     \date{\today}
21    
22     %-------------------------------------------------------------------
23     % Begin Document
24    
25     \begin{document}
26     \maketitle
27    
28    
29    
30     % Slide 1
31     \begin{slide} {Talk Outline}
32     \begin{itemize}
33    
34     \item Discussion of the research motivation and goals
35    
36     \item Methodology
37    
38     \item Discussion of current research and preliminary results
39    
40     \item Future research
41    
42     \end{itemize}
43     \end{slide}
44    
45    
46     % Slide 2
47    
48     \begin{slide}{Motivation}
49     \begin{itemize}
50    
51     % make sure to come back and talk about the need for long time and length
52     % scales
53    
54     \item Drug diffusion
55    
56     \item ripple phase
57    
58     \item bilayer formation dynamics
59    
60     \end{itemize}
61     \end{slide}
62    
63    
64     % Slide 3
65    
66     \begin{slide}{Research Goals}
67     \begin{itemize}
68    
69     \item
70     To develop a coarse-grain simulation model with which to simulate
71     phospholipid bilayers.
72    
73     \item To use the model to observe:
74    
75     \begin{itemize}
76    
77     \item Phospholipid properties with long length scales
78    
79     \begin{itemize}
80     \item The ripple phase.
81     \end{itemize}
82    
83     \item Long time scale dynamics of biological relevance
84    
85     \begin{itemize}
86     \item Trans-membrane diffusion of drug molecules
87     \end{itemize}
88     \end{itemize}
89     \end{itemize}
90     \end{slide}
91    
92    
93     % Slide 4
94    
95     \begin{slide}{Length Scale Simplification}
96     \begin{itemize}
97    
98     \item
99     Replace any charged interactions of the system with dipoles.
100    
101     \begin{itemize}
102     \item Allows for computational scaling aproximately by $N$ for
103     dipole-dipole interactions.
104     \item In contrast, the Ewald sum scales aproximately by $N \log N$.
105     \end{itemize}
106    
107     \item
108     Use unified models for the water and the lipid chain.
109    
110     \begin{itemize}
111     \item Drastically reduces the number of atoms to simulate.
112     \item Number of water interactions alone reduced by $\frac{1}{3}$.
113     \end{itemize}
114     \end{itemize}
115     \end{slide}
116    
117    
118     % Slide 5
119    
120     \begin{slide}{Time Scale Simplification}
121     \begin{itemize}
122    
123     \item
124     No explicit hydrogens
125    
126     \begin{itemize}
127     \item Hydrogen bond vibration is normally one of the fastest time
128     events in a simulation.
129     \end{itemize}
130    
131     \item
132     Constrain all bonds to be of fixed length.
133    
134     \begin{itemize}
135     \item As with the hydrgoens, bond vibrations are the fastest motion in
136     asimulation
137     \end{itemize}
138    
139     \item
140     Allows time steps of up to 3 fs with the current integrator.
141    
142     \end{itemize}
143     \end{slide}
144    
145    
146     % Slide 6
147     \begin{slide}{Molecular Dynamics}
148    
149     All of our simulations will be carried out using molcular
150     dymnamics. This involves solving Newton's equations of motion using
151     the classical \emph{Hamiltonian} as follows:
152    
153     \begin{equation}
154     H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
155     \end{equation}
156    
157     Here $T(\vec{p})$ is the kinetic energy of the system which is a
158     function of momentum. In cartesian space, $T(\vec{p})$ can be
159     written as:
160    
161     \begin{equation}
162     T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
163     \end{equation}
164    
165     \end{slide}
166    
167    
168     % Slide 7
169     \begin{slide}{The Potential}
170    
171     The main part of the simulation is then the calculation of forces from
172     the potential energy.
173    
174     \begin{equation}
175     \vec{F}(\vec{q}) = - \nabla V(\vec{q})
176     \end{equation}
177    
178     The potential itself is made of several parts.
179    
180     \begin{equation}
181     V_{tot} =
182     \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
183     \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
184     \end{equation}
185    
186     Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
187     the bond, bend, and torsion potentials, and the non-bonded
188 mmeineke 51 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
189     lenard-jones, dipole-dipole, and sticky potential interactions.
190 mmeineke 49
191     \end{slide}
192    
193    
194 mmeineke 51 % Slide 8
195 mmeineke 49
196 mmeineke 51 \begin{slide}{Soft Sticky Dipole Model}
197 mmeineke 49
198 mmeineke 52 The Soft-Sticky model for water is a reduced model.
199 mmeineke 49
200 mmeineke 52 \begin{itemize}
201 mmeineke 49
202 mmeineke 52 \item
203     The model is represented by a single point mass at the water's center
204     of mass.
205 mmeineke 49
206 mmeineke 52 \item
207     The point mass contains a fixed dipole of 2.35 D pointing from the
208     oxegens toward the hydrogens.
209 mmeineke 51
210 mmeineke 52 \end{itemize}
211 mmeineke 51
212 mmeineke 52 \color{red}
213     !!!!!!!!!!!!!SSD image goes here.!!!!!!!!!!!!!!!!
214     \color{black}
215 mmeineke 51
216    
217 mmeineke 52 It's potential is as follows:
218    
219     \begin{equation}
220     V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
221     + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
222     \end{equation}
223     \end{slide}
224    
225    
226     % Slide 9
227     \begin{slide}{Hydrogen Bonding in SSD}
228    
229     It is important to note that SSD has a potential specifically to
230     recreate the hydrogen bonfding network of water.
231    
232     \color{red}
233     ICE SSD
234    
235     ICE point Dipole
236     \color{black}
237    
238     The importance of the hydrogen bond network is it's signifigant
239     contribution to the hydrophobic driving force of bilayer formation.
240     \end{slide}
241    
242    
243     % Slide 10
244    
245     \begin{slide}{The Lipid Model}
246    
247     \color{red}
248    
249     Look at me, I'm a lipid.!!!!!!!!
250    
251     YAY!!!!!!!!!!!!!!!!!!!!!
252     \color{black}
253    
254     \end{slide}
255    
256    
257     % Slide 11
258    
259     \begin{slide}{Initial Runs: 25 Lipids in water}
260    
261     \color{red}
262     5x5 parameters
263     \color{black}
264    
265     \end{slide}
266    
267    
268     % Slide 12
269    
270     \begin{slide}{5x5: Initial and Final}
271    
272     \color{red}
273     picture of initial
274    
275     picture of final
276     \color{black}
277    
278     \end{slide}
279    
280    
281     % Slide 13
282    
283     \begin{slide}{5x5: $g(r)$}
284    
285     \color{red}
286    
287     GofR's baby
288    
289     \color{black}
290    
291     \end{slide}
292    
293    
294     % Slide 14
295    
296     \begin{slide}{5x5: $\cos$ correlations}
297    
298     \color{red}
299     Cosine correlation functions
300     \color{black}
301    
302     \end{slide}
303    
304    
305     % Slide 15
306    
307     \begin{slide}{Initial Runs: 50 Lipids radomly arrangend in water}
308    
309     \color{red}
310     R-50 parameters
311     \color{black}
312    
313     \end{slide}
314    
315    
316     % Slide 16
317    
318     \begin{slide}{R-50: Initial and Final}
319    
320     \color{red}
321     picture of initial
322    
323     picture of final
324     \color{black}
325    
326     \end{slide}
327    
328    
329     % Slide 17
330    
331     \begin{slide}{R-50: $g(r)$}
332    
333     \color{red}
334    
335     GofR's baby
336    
337     \color{black}
338    
339     \end{slide}
340    
341    
342     % Slide 18
343    
344     \begin{slide}{R-50: $\cos$ correlations}
345    
346     \color{red}
347     Cosine correlation functions
348     \color{black}
349    
350     \end{slide}
351    
352    
353     % Slide 19
354    
355     \begin{slide}{Future Directions}
356    
357     \color{red}
358     THe future is wide open
359     \color{black}
360    
361     \end{slide}
362    
363    
364     % Slide 20
365    
366     \begin{slide}{Acknowledgements}
367    
368     \color{red}
369     Mad Props to all my homies
370    
371     I'll mourn ya till I join Ya.
372     \color{black}
373    
374     \end{slide}
375    
376    
377    
378    
379    
380    
381    
382    
383 mmeineke 49 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
384    
385     \end{document}