ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 53
Committed: Sun Jul 28 18:22:07 2002 UTC (22 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 8212 byte(s)
Log Message:
getting there. Most everything but the motivation slide has been filled out. Lacks only pictures and Diagrams.

File Contents

# User Rev Content
1 mmeineke 49 % temporary preamble
2    
3     \documentclass{seminar}
4 mmeineke 52 \usepackage{color}
5 mmeineke 49 \usepackage{amsmath}
6 mmeineke 52 \usepackage{amssymb}
7 mmeineke 49 \usepackage{epsf}
8    
9     % ----------------------
10     % | Title |
11     % ----------------------
12    
13     \title{A Coarse Grain Model for Phospholipid MD Simulations}
14    
15     \author{Matthew A. Meineke\\
16     Department of Chemistry and Biochemistry\\
17     University of Notre Dame\\
18     Notre Dame, Indiana 46556}
19    
20     \date{\today}
21    
22     %-------------------------------------------------------------------
23     % Begin Document
24    
25     \begin{document}
26     \maketitle
27    
28    
29    
30     % Slide 1
31     \begin{slide} {Talk Outline}
32     \begin{itemize}
33    
34     \item Discussion of the research motivation and goals
35    
36     \item Methodology
37    
38     \item Discussion of current research and preliminary results
39    
40     \item Future research
41    
42     \end{itemize}
43     \end{slide}
44    
45    
46     % Slide 2
47    
48     \begin{slide}{Motivation}
49     \begin{itemize}
50    
51     % make sure to come back and talk about the need for long time and length
52     % scales
53    
54     \item Drug diffusion
55    
56     \item ripple phase
57    
58     \item bilayer formation dynamics
59    
60     \end{itemize}
61     \end{slide}
62    
63    
64     % Slide 3
65    
66     \begin{slide}{Research Goals}
67     \begin{itemize}
68    
69     \item
70     To develop a coarse-grain simulation model with which to simulate
71     phospholipid bilayers.
72    
73     \item To use the model to observe:
74    
75     \begin{itemize}
76    
77     \item Phospholipid properties with long length scales
78    
79     \begin{itemize}
80     \item The ripple phase.
81     \end{itemize}
82    
83     \item Long time scale dynamics of biological relevance
84    
85     \begin{itemize}
86     \item Trans-membrane diffusion of drug molecules
87     \end{itemize}
88     \end{itemize}
89     \end{itemize}
90     \end{slide}
91    
92    
93     % Slide 4
94    
95     \begin{slide}{Length Scale Simplification}
96     \begin{itemize}
97    
98     \item
99     Replace any charged interactions of the system with dipoles.
100    
101     \begin{itemize}
102 mmeineke 53 \item Allows for computational scaling approximately by $N$ for
103 mmeineke 49 dipole-dipole interactions.
104 mmeineke 53 \item In contrast, the Ewald sum scales approximately by $N \log N$.
105 mmeineke 49 \end{itemize}
106    
107     \item
108     Use unified models for the water and the lipid chain.
109    
110     \begin{itemize}
111     \item Drastically reduces the number of atoms to simulate.
112     \item Number of water interactions alone reduced by $\frac{1}{3}$.
113     \end{itemize}
114     \end{itemize}
115     \end{slide}
116    
117    
118     % Slide 5
119    
120     \begin{slide}{Time Scale Simplification}
121     \begin{itemize}
122    
123     \item
124     No explicit hydrogens
125    
126     \begin{itemize}
127     \item Hydrogen bond vibration is normally one of the fastest time
128     events in a simulation.
129     \end{itemize}
130    
131     \item
132     Constrain all bonds to be of fixed length.
133    
134     \begin{itemize}
135 mmeineke 53 \item As with the hydrogens, bond vibrations are the fastest motion in
136     a simulation
137 mmeineke 49 \end{itemize}
138    
139     \item
140     Allows time steps of up to 3 fs with the current integrator.
141    
142     \end{itemize}
143     \end{slide}
144    
145    
146     % Slide 6
147     \begin{slide}{Molecular Dynamics}
148    
149 mmeineke 53 All of our simulations will be carried out using molecular
150     dynamics. This involves solving Newton's equations of motion using
151 mmeineke 49 the classical \emph{Hamiltonian} as follows:
152    
153     \begin{equation}
154     H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
155     \end{equation}
156    
157     Here $T(\vec{p})$ is the kinetic energy of the system which is a
158 mmeineke 53 function of momentum. In Cartesian space, $T(\vec{p})$ can be
159 mmeineke 49 written as:
160    
161     \begin{equation}
162     T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
163     \end{equation}
164    
165     \end{slide}
166    
167    
168     % Slide 7
169     \begin{slide}{The Potential}
170    
171     The main part of the simulation is then the calculation of forces from
172     the potential energy.
173    
174     \begin{equation}
175     \vec{F}(\vec{q}) = - \nabla V(\vec{q})
176     \end{equation}
177    
178     The potential itself is made of several parts.
179    
180     \begin{equation}
181     V_{tot} =
182     \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
183     \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
184     \end{equation}
185    
186     Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
187     the bond, bend, and torsion potentials, and the non-bonded
188 mmeineke 51 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
189     lenard-jones, dipole-dipole, and sticky potential interactions.
190 mmeineke 49
191     \end{slide}
192    
193    
194 mmeineke 51 % Slide 8
195 mmeineke 49
196 mmeineke 51 \begin{slide}{Soft Sticky Dipole Model}
197 mmeineke 49
198 mmeineke 52 The Soft-Sticky model for water is a reduced model.
199 mmeineke 49
200 mmeineke 52 \begin{itemize}
201 mmeineke 49
202 mmeineke 52 \item
203     The model is represented by a single point mass at the water's center
204     of mass.
205 mmeineke 49
206 mmeineke 52 \item
207     The point mass contains a fixed dipole of 2.35 D pointing from the
208 mmeineke 53 oxygens toward the hydrogens.
209 mmeineke 51
210 mmeineke 52 \end{itemize}
211 mmeineke 51
212 mmeineke 52 \color{red}
213     !!!!!!!!!!!!!SSD image goes here.!!!!!!!!!!!!!!!!
214     \color{black}
215 mmeineke 51
216    
217 mmeineke 52 It's potential is as follows:
218    
219     \begin{equation}
220     V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
221     + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
222     \end{equation}
223     \end{slide}
224    
225    
226     % Slide 9
227     \begin{slide}{Hydrogen Bonding in SSD}
228    
229     It is important to note that SSD has a potential specifically to
230 mmeineke 53 recreate the hydrogen bonding network of water.
231 mmeineke 52
232     \color{red}
233     ICE SSD
234    
235     ICE point Dipole
236     \color{black}
237    
238 mmeineke 53 The importance of the hydrogen bond network is it's significant
239 mmeineke 52 contribution to the hydrophobic driving force of bilayer formation.
240     \end{slide}
241    
242    
243     % Slide 10
244    
245     \begin{slide}{The Lipid Model}
246    
247 mmeineke 53 To eliminate the need for charge-charge interactions, our lipid model
248     replaces the phospholipid head group with a single large head group
249     atom containing a freely oriented dipole. The tail is a simple alkane chain.
250    
251     Lipid Properties:
252     \begin{itemize}
253     \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$
254     \item $m_{\text{HEAD}} = 196\ \text{amu}$
255     \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms
256     \begin{itemize}
257     \item Alkane forcefield parameters taken from TraPPE
258     \end{itemize}
259     \end{itemize}
260    
261     \end{slide}
262    
263    
264     % Slide 11
265    
266     \begin{slide}{Lipid Model}
267    
268 mmeineke 52 \color{red}
269    
270     Look at me, I'm a lipid.!!!!!!!!
271    
272     YAY!!!!!!!!!!!!!!!!!!!!!
273     \color{black}
274    
275     \end{slide}
276    
277    
278 mmeineke 53 % Slide 12
279 mmeineke 52
280     \begin{slide}{Initial Runs: 25 Lipids in water}
281    
282 mmeineke 53 \textbf{Simulation Parameters:}
283 mmeineke 52
284 mmeineke 53 \begin{itemize}
285    
286     \item Starting Configuration:
287     \begin{itemize}
288     \item 25 lipid molecules arranged in a 5 x 5 square
289     \item square was surrounded by a sea of 1386 waters
290     \begin{itemize}
291     \item final water to lipid ratio was 55.4:1
292     \end{itemize}
293     \end{itemize}
294    
295     \item Lipid had only a single saturated chain of 16 carbons
296    
297     \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$
298    
299     \item dt = 2.0 - 3.0 fs
300    
301     \item T = 300 K
302    
303     \item NVE ensemble
304    
305     \item Periodic boundary conditions
306     \end{itemize}
307    
308 mmeineke 52 \end{slide}
309    
310    
311 mmeineke 53 % Slide 13
312 mmeineke 52
313     \begin{slide}{5x5: Initial and Final}
314    
315     \color{red}
316     picture of initial
317    
318     picture of final
319     \color{black}
320    
321     \end{slide}
322    
323    
324 mmeineke 53 % Slide 14
325 mmeineke 52
326     \begin{slide}{5x5: $g(r)$}
327    
328     \color{red}
329    
330     GofR's baby
331    
332     \color{black}
333    
334     \end{slide}
335    
336    
337 mmeineke 53 % Slide 15
338 mmeineke 52
339     \begin{slide}{5x5: $\cos$ correlations}
340    
341     \color{red}
342     Cosine correlation functions
343     \color{black}
344    
345     \end{slide}
346    
347    
348 mmeineke 53 % Slide 16
349 mmeineke 52
350 mmeineke 53 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
351 mmeineke 52
352 mmeineke 53 \textbf{Simulation Parameters:}
353 mmeineke 52
354 mmeineke 53 \begin{itemize}
355    
356     \item Starting Configuration:
357     \begin{itemize}
358     \item 50 lipid molecules arranged randomly in a rectangular box
359     \item The box was then filled with 1384 waters
360     \begin{itemize}
361     \item final water to lipid ratio was 27:1
362     \end{itemize}
363     \end{itemize}
364    
365     \item Lipid had only a single saturated chain of 16 carbons
366    
367     \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
368    
369     \item dt = 2.0 - 3.0 fs
370    
371     \item T = 300 K
372    
373     \item NVE ensemble
374    
375     \item Periodic boundary conditions
376    
377     \end{itemize}
378    
379 mmeineke 52 \end{slide}
380    
381    
382 mmeineke 53 % Slide 17
383 mmeineke 52
384     \begin{slide}{R-50: Initial and Final}
385    
386     \color{red}
387     picture of initial
388    
389     picture of final
390     \color{black}
391    
392     \end{slide}
393    
394    
395 mmeineke 53 % Slide 18
396 mmeineke 52
397     \begin{slide}{R-50: $g(r)$}
398    
399     \color{red}
400    
401     GofR's baby
402    
403     \color{black}
404    
405     \end{slide}
406    
407    
408 mmeineke 53 % Slide 19
409 mmeineke 52
410     \begin{slide}{R-50: $\cos$ correlations}
411    
412     \color{red}
413     Cosine correlation functions
414     \color{black}
415    
416     \end{slide}
417    
418    
419 mmeineke 53 % Slide 20
420 mmeineke 52
421     \begin{slide}{Future Directions}
422    
423 mmeineke 53 \begin{itemize}
424 mmeineke 52
425 mmeineke 53 \item
426     Simulation of a lipid with 2 chains, or perhaps expand the current
427     unified chain atoms to take up greater steric bulk.
428    
429     \item
430     Incorporate constant pressure and constant temperature into the ensemble.
431    
432     \item
433     Parrellize the code.
434    
435     \end{itemize}
436 mmeineke 52 \end{slide}
437    
438    
439 mmeineke 53 % Slide 21
440 mmeineke 52
441     \begin{slide}{Acknowledgements}
442    
443 mmeineke 53 \begin{itemize}
444 mmeineke 52
445 mmeineke 53 \item Dr. J. Daniel Gezelter
446     \item Christopher Fennel
447     \item Charles Vardeman
448     \item Teng Lin
449 mmeineke 52
450 mmeineke 53 \end{itemize}
451    
452     Funding by:
453     \begin{itemize}
454     \item Dreyfus New Faculty Award
455     \end{itemize}
456    
457 mmeineke 52 \end{slide}
458    
459    
460    
461    
462    
463    
464    
465    
466 mmeineke 49 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
467    
468     \end{document}