ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 54
Committed: Tue Jul 30 17:25:26 2002 UTC (22 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 10107 byte(s)
Log Message:


added all of the pictures. And gave a practice talk based on this version. Now begins the process of cleanup and additions
of citations.

File Contents

# User Rev Content
1 mmeineke 49 % temporary preamble
2    
3 mmeineke 54 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4    
5    
6 mmeineke 49 \documentclass{seminar}
7 mmeineke 52 \usepackage{color}
8 mmeineke 54
9 mmeineke 49 \usepackage{amsmath}
10 mmeineke 52 \usepackage{amssymb}
11 mmeineke 49 \usepackage{epsf}
12    
13     % ----------------------
14     % | Title |
15     % ----------------------
16    
17     \title{A Coarse Grain Model for Phospholipid MD Simulations}
18    
19     \author{Matthew A. Meineke\\
20     Department of Chemistry and Biochemistry\\
21     University of Notre Dame\\
22     Notre Dame, Indiana 46556}
23    
24     \date{\today}
25    
26     %-------------------------------------------------------------------
27     % Begin Document
28    
29     \begin{document}
30     \maketitle
31    
32    
33    
34     % Slide 1
35     \begin{slide} {Talk Outline}
36     \begin{itemize}
37    
38     \item Discussion of the research motivation and goals
39    
40     \item Methodology
41    
42     \item Discussion of current research and preliminary results
43    
44     \item Future research
45    
46     \end{itemize}
47     \end{slide}
48    
49    
50     % Slide 2
51    
52     \begin{slide}{Motivation}
53 mmeineke 54
54     There is a strong need in phospholipid bilayer simulations for the
55     capability to simulate both long time and length scales. Consider the
56     following:
57    
58 mmeineke 49 \begin{itemize}
59    
60     \item Drug diffusion
61 mmeineke 54 \begin{itemize}
62     \item Some drug molecules may spend an appreciable time in the
63     membrane. Long time scale dynamics are needed to observe and
64     characterize their actions.
65     \end{itemize}
66 mmeineke 49
67 mmeineke 54 \item Ripple phase
68     \begin{itemize}
69     \item Between the bilayer gel and fluid phase there exists a ripple
70     phase. This phase has a period of about 100 - 200 $\mbox{\AA}$.
71     \end{itemize}
72 mmeineke 49
73 mmeineke 54 \item Bilayer formation dynamics
74     \begin{itemize}
75     \item Initial simulations show that bilayers can take upwards of
76     20 ns to form completely.
77     \end{itemize}
78 mmeineke 49
79     \end{itemize}
80     \end{slide}
81    
82    
83     % Slide 3
84    
85     \begin{slide}{Research Goals}
86     \begin{itemize}
87    
88     \item
89     To develop a coarse-grain simulation model with which to simulate
90     phospholipid bilayers.
91    
92     \item To use the model to observe:
93    
94     \begin{itemize}
95    
96     \item Phospholipid properties with long length scales
97    
98     \begin{itemize}
99     \item The ripple phase.
100     \end{itemize}
101    
102     \item Long time scale dynamics of biological relevance
103    
104     \begin{itemize}
105     \item Trans-membrane diffusion of drug molecules
106     \end{itemize}
107     \end{itemize}
108     \end{itemize}
109     \end{slide}
110    
111    
112     % Slide 4
113    
114     \begin{slide}{Length Scale Simplification}
115     \begin{itemize}
116    
117     \item
118     Replace any charged interactions of the system with dipoles.
119    
120     \begin{itemize}
121 mmeineke 53 \item Allows for computational scaling approximately by $N$ for
122 mmeineke 49 dipole-dipole interactions.
123 mmeineke 53 \item In contrast, the Ewald sum scales approximately by $N \log N$.
124 mmeineke 49 \end{itemize}
125    
126     \item
127     Use unified models for the water and the lipid chain.
128    
129     \begin{itemize}
130     \item Drastically reduces the number of atoms to simulate.
131     \item Number of water interactions alone reduced by $\frac{1}{3}$.
132     \end{itemize}
133     \end{itemize}
134     \end{slide}
135    
136    
137     % Slide 5
138    
139     \begin{slide}{Time Scale Simplification}
140     \begin{itemize}
141    
142     \item
143     No explicit hydrogens
144    
145     \begin{itemize}
146     \item Hydrogen bond vibration is normally one of the fastest time
147     events in a simulation.
148     \end{itemize}
149    
150     \item
151     Constrain all bonds to be of fixed length.
152    
153     \begin{itemize}
154 mmeineke 53 \item As with the hydrogens, bond vibrations are the fastest motion in
155     a simulation
156 mmeineke 49 \end{itemize}
157    
158     \item
159     Allows time steps of up to 3 fs with the current integrator.
160    
161     \end{itemize}
162     \end{slide}
163    
164    
165     % Slide 6
166     \begin{slide}{Molecular Dynamics}
167    
168 mmeineke 53 All of our simulations will be carried out using molecular
169     dynamics. This involves solving Newton's equations of motion using
170 mmeineke 49 the classical \emph{Hamiltonian} as follows:
171    
172     \begin{equation}
173     H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
174     \end{equation}
175    
176     Here $T(\vec{p})$ is the kinetic energy of the system which is a
177 mmeineke 53 function of momentum. In Cartesian space, $T(\vec{p})$ can be
178 mmeineke 49 written as:
179    
180     \begin{equation}
181     T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
182     \end{equation}
183    
184     \end{slide}
185    
186    
187     % Slide 7
188     \begin{slide}{The Potential}
189    
190     The main part of the simulation is then the calculation of forces from
191     the potential energy.
192    
193     \begin{equation}
194     \vec{F}(\vec{q}) = - \nabla V(\vec{q})
195     \end{equation}
196    
197     The potential itself is made of several parts.
198    
199     \begin{equation}
200     V_{tot} =
201     \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
202     \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
203     \end{equation}
204    
205     Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
206     the bond, bend, and torsion potentials, and the non-bonded
207 mmeineke 51 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
208     lenard-jones, dipole-dipole, and sticky potential interactions.
209 mmeineke 49
210     \end{slide}
211    
212    
213 mmeineke 51 % Slide 8
214 mmeineke 49
215 mmeineke 51 \begin{slide}{Soft Sticky Dipole Model}
216 mmeineke 49
217 mmeineke 52 The Soft-Sticky model for water is a reduced model.
218 mmeineke 49
219 mmeineke 52 \begin{itemize}
220 mmeineke 49
221 mmeineke 52 \item
222     The model is represented by a single point mass at the water's center
223     of mass.
224 mmeineke 49
225 mmeineke 52 \item
226     The point mass contains a fixed dipole of 2.35 D pointing from the
227 mmeineke 53 oxygens toward the hydrogens.
228 mmeineke 51
229 mmeineke 52 \end{itemize}
230 mmeineke 51
231 mmeineke 52 It's potential is as follows:
232    
233     \begin{equation}
234     V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
235     + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
236     \end{equation}
237     \end{slide}
238    
239 mmeineke 54 % Slide 8b
240 mmeineke 52
241 mmeineke 54 \begin{slide}{SSD Diagram}
242    
243     \begin{center}
244     \begin{figure}
245     \epsfxsize=50mm
246     \epsfbox{ssd.epsi}
247     \end{figure}
248     \end{center}
249    
250     A Diagram of the SSD model.
251     \end{slide}
252    
253 mmeineke 52 % Slide 9
254     \begin{slide}{Hydrogen Bonding in SSD}
255    
256     It is important to note that SSD has a potential specifically to
257 mmeineke 53 recreate the hydrogen bonding network of water.
258 mmeineke 52
259 mmeineke 54
260 mmeineke 52 ICE SSD
261    
262     ICE point Dipole
263    
264 mmeineke 54
265 mmeineke 53 The importance of the hydrogen bond network is it's significant
266 mmeineke 52 contribution to the hydrophobic driving force of bilayer formation.
267     \end{slide}
268    
269    
270     % Slide 10
271    
272     \begin{slide}{The Lipid Model}
273    
274 mmeineke 53 To eliminate the need for charge-charge interactions, our lipid model
275     replaces the phospholipid head group with a single large head group
276     atom containing a freely oriented dipole. The tail is a simple alkane chain.
277    
278     Lipid Properties:
279     \begin{itemize}
280     \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$
281     \item $m_{\text{HEAD}} = 196\ \text{amu}$
282     \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms
283     \begin{itemize}
284     \item Alkane forcefield parameters taken from TraPPE
285     \end{itemize}
286     \end{itemize}
287    
288     \end{slide}
289    
290    
291     % Slide 11
292    
293     \begin{slide}{Lipid Model}
294    
295 mmeineke 52
296 mmeineke 54
297 mmeineke 52 \end{slide}
298    
299    
300 mmeineke 53 % Slide 12
301 mmeineke 52
302     \begin{slide}{Initial Runs: 25 Lipids in water}
303    
304 mmeineke 53 \textbf{Simulation Parameters:}
305 mmeineke 52
306 mmeineke 53 \begin{itemize}
307    
308     \item Starting Configuration:
309     \begin{itemize}
310     \item 25 lipid molecules arranged in a 5 x 5 square
311     \item square was surrounded by a sea of 1386 waters
312     \begin{itemize}
313     \item final water to lipid ratio was 55.4:1
314     \end{itemize}
315     \end{itemize}
316    
317     \item Lipid had only a single saturated chain of 16 carbons
318    
319     \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$
320    
321     \item dt = 2.0 - 3.0 fs
322    
323     \item T = 300 K
324    
325     \item NVE ensemble
326    
327     \item Periodic boundary conditions
328     \end{itemize}
329    
330 mmeineke 52 \end{slide}
331    
332    
333 mmeineke 53 % Slide 13
334 mmeineke 52
335 mmeineke 54 \begin{slide}{5x5: Initial}
336 mmeineke 52
337 mmeineke 54 \begin{center}
338     \begin{figure}
339     \epsfxsize=50mm
340     \epsfbox{5x5-initial.eps}
341     \end{figure}
342     \end{center}
343 mmeineke 52
344 mmeineke 54 The initial configuration
345 mmeineke 52
346     \end{slide}
347    
348 mmeineke 54 \begin{slide}{5x5: Final}
349 mmeineke 52
350 mmeineke 54 \begin{center}
351     \begin{figure}
352     \epsfxsize=60mm
353     \epsfbox{5x5-1.7ns.eps}
354     \end{figure}
355     \end{center}
356    
357     The final configuration at 1.7 ns.
358    
359     \end{slide}
360    
361    
362 mmeineke 53 % Slide 14
363 mmeineke 52
364     \begin{slide}{5x5: $g(r)$}
365    
366 mmeineke 54 \begin{center}
367     \begin{figure}
368     \epsfxsize=60mm
369     \epsfbox{all5x5-HEAD-HEAD-gr.eps}
370     \end{figure}
371     \end{center}
372 mmeineke 52
373    
374 mmeineke 54 \end{slide}
375 mmeineke 52
376 mmeineke 54 \begin{slide}{5x5: $g(r)$}
377    
378     \begin{center}
379     \begin{figure}
380     \epsfxsize=60mm
381     \epsfbox{all5x5-HEAD-X-gr.eps}
382     \end{figure}
383     \end{center}
384    
385    
386 mmeineke 52 \end{slide}
387    
388    
389 mmeineke 53 % Slide 15
390 mmeineke 52
391     \begin{slide}{5x5: $\cos$ correlations}
392    
393 mmeineke 54 \begin{center}
394     \begin{figure}
395     \epsfxsize=60mm
396     \epsfbox{all5x5-HEAD-HEAD-cr.eps}
397     \end{figure}
398     \end{center}
399 mmeineke 52
400     \end{slide}
401    
402 mmeineke 54 \begin{slide}{5x5: $\cos$ correlations}
403 mmeineke 52
404 mmeineke 54 \begin{center}
405     \begin{figure}
406     \epsfxsize=60mm
407     \epsfbox{all5x5-HEAD-X-cr.eps}
408     \end{figure}
409     \end{center}
410    
411     \end{slide}
412    
413    
414 mmeineke 53 % Slide 16
415 mmeineke 52
416 mmeineke 53 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
417 mmeineke 52
418 mmeineke 53 \textbf{Simulation Parameters:}
419 mmeineke 52
420 mmeineke 53 \begin{itemize}
421    
422     \item Starting Configuration:
423     \begin{itemize}
424     \item 50 lipid molecules arranged randomly in a rectangular box
425     \item The box was then filled with 1384 waters
426     \begin{itemize}
427     \item final water to lipid ratio was 27:1
428     \end{itemize}
429     \end{itemize}
430    
431     \item Lipid had only a single saturated chain of 16 carbons
432    
433     \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
434    
435     \item dt = 2.0 - 3.0 fs
436    
437     \item T = 300 K
438    
439     \item NVE ensemble
440    
441     \item Periodic boundary conditions
442    
443     \end{itemize}
444    
445 mmeineke 52 \end{slide}
446    
447    
448 mmeineke 53 % Slide 17
449 mmeineke 52
450 mmeineke 54 \begin{slide}{R-50: Initial}
451 mmeineke 52
452 mmeineke 54 \begin{center}
453     \begin{figure}
454     \epsfxsize=100mm
455     \epsfbox{r50-initial.eps}
456     \end{figure}
457     \end{center}
458 mmeineke 52
459 mmeineke 54 The initial configuration
460 mmeineke 52
461     \end{slide}
462    
463 mmeineke 54 \begin{slide}{R-50: Final}
464 mmeineke 52
465 mmeineke 54 \begin{center}
466     \begin{figure}
467     \epsfxsize=100mm
468     \epsfbox{r50-521ps.eps}
469     \end{figure}
470     \end{center}
471    
472     The fianl configuration at 521 ps
473    
474     \end{slide}
475    
476    
477 mmeineke 53 % Slide 18
478 mmeineke 52
479     \begin{slide}{R-50: $g(r)$}
480    
481    
482 mmeineke 54 \begin{center}
483     \begin{figure}
484     \epsfxsize=60mm
485     \epsfbox{r50-HEAD-HEAD-gr.eps}
486     \end{figure}
487     \end{center}
488 mmeineke 52
489 mmeineke 54 \end{slide}
490 mmeineke 52
491 mmeineke 54
492     \begin{slide}{R-50: $g(r)$}
493    
494    
495     \begin{center}
496     \begin{figure}
497     \epsfxsize=60mm
498     \epsfbox{r50-HEAD-X-gr.eps}
499     \end{figure}
500     \end{center}
501    
502 mmeineke 52 \end{slide}
503    
504    
505 mmeineke 53 % Slide 19
506 mmeineke 52
507     \begin{slide}{R-50: $\cos$ correlations}
508    
509    
510 mmeineke 54 \begin{center}
511     \begin{figure}
512     \epsfxsize=60mm
513     \epsfbox{r50-HEAD-HEAD-cr.eps}
514     \end{figure}
515     \end{center}
516    
517 mmeineke 52 \end{slide}
518    
519 mmeineke 54 \begin{slide}{R-50: $\cos$ correlations}
520 mmeineke 52
521 mmeineke 54
522     \begin{center}
523     \begin{figure}
524     \epsfxsize=60mm
525     \epsfbox{r50-HEAD-X-cr.eps}
526     \end{figure}
527     \end{center}
528    
529     \end{slide}
530    
531    
532 mmeineke 53 % Slide 20
533 mmeineke 52
534     \begin{slide}{Future Directions}
535    
536 mmeineke 53 \begin{itemize}
537 mmeineke 52
538 mmeineke 53 \item
539     Simulation of a lipid with 2 chains, or perhaps expand the current
540     unified chain atoms to take up greater steric bulk.
541    
542     \item
543     Incorporate constant pressure and constant temperature into the ensemble.
544    
545     \item
546     Parrellize the code.
547    
548     \end{itemize}
549 mmeineke 52 \end{slide}
550    
551    
552 mmeineke 53 % Slide 21
553 mmeineke 52
554     \begin{slide}{Acknowledgements}
555    
556 mmeineke 53 \begin{itemize}
557 mmeineke 52
558 mmeineke 53 \item Dr. J. Daniel Gezelter
559     \item Christopher Fennel
560     \item Charles Vardeman
561     \item Teng Lin
562 mmeineke 52
563 mmeineke 53 \end{itemize}
564    
565     Funding by:
566     \begin{itemize}
567     \item Dreyfus New Faculty Award
568     \end{itemize}
569    
570 mmeineke 52 \end{slide}
571    
572    
573    
574    
575    
576    
577    
578    
579 mmeineke 49 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
580    
581     \end{document}