ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 63
Committed: Wed Aug 7 19:09:03 2002 UTC (22 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 15099 byte(s)
Log Message:
switched in Chuck's magic slide enviroment

File Contents

# User Rev Content
1 mmeineke 49 % temporary preamble
2    
3 mmeineke 54 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4    
5 mmeineke 63 \documentclass[letter,portrait]{seminar}
6     \usepackage[usenames,dvips]{pstcol}
7     \usepackage{semcolor}
8     \usepackage[dvips]{color}
9     %\usepackage[dvips]{graphicx}
10 mmeineke 49 \usepackage{amsmath}
11 mmeineke 52 \usepackage{amssymb}
12 mmeineke 62 \usepackage{wrapfig}
13 mmeineke 49 \usepackage{epsf}
14    
15 mmeineke 63 \usepackage[citefull=first]{jurabib}
16    
17    
18     \jurabibsetup{bibformat={tabular,ibidem,numbered}}
19     \centerslidesfalse
20    
21     % -----------------------------
22     % | preamble + macros and crap |
23     % -----------------------------
24    
25    
26     % Basic Color Defs used within this file
27     \definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue
28     \definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue
29     \definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red
30     \definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue
31    
32     %\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color
33    
34     % Change itemize environment to use funky color bullets
35     \renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}}
36     \renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}}
37     \renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}}
38    
39    
40    
41    
42    
43     % Input corrections to 'seminar'
44    
45     \input{seminar.bug}
46     \input{seminar.bg2}
47    
48     % Slides parameters: general setup
49    
50     \centerslidesfalse % Text not centered
51     \slideframe{none} % No frame borders
52     \raggedslides[2em] % Semi-ragged-right text
53     \slidestyle{empty} % No labels
54     \rotateheaderstrue % Header and slide orientation synchronized
55    
56     % Slides dimensions and header placement
57    
58     \addtolength{\slidewidth}{25mm}
59     \addtolength{\slideheight}{10mm}
60     \renewcommand{\slideleftmargin}{10mm}
61     \renewcommand{\sliderightmargin}{10mm}
62     \renewcommand{\slidetopmargin}{10mm}
63     \renewcommand{\slidebottommargin}{15mm}
64    
65     % Landscape printing sequence (for dvips)
66    
67     \renewcommand{\printlandscape}{\special{landscape}}
68    
69    
70     % My-itemize environment (3 levels): essentially not indented from
71     % the left margin. New second- and third-level item markers.
72    
73     \newenvironment{myt}
74     {\begin{list}{$\bullet$}%
75     {\setlength{\labelwidth}{9pt}%
76     \setlength{\labelsep}{4pt}%
77     \setlength{\leftmargin}{13pt}%
78     \setlength{\topsep}{\parskip}%
79     \setlength{\partopsep}{\parskip}%
80     \setlength{\itemsep}{0pt}}}%
81     {\end{list}}
82    
83    
84     \newenvironment{myt1}
85     {\begin{list}{$\star$}%
86     {\setlength{\labelwidth}{9pt}%
87     \setlength{\labelsep}{4pt}%
88     \setlength{\leftmargin}{13pt}%
89     \setlength{\topsep}{0pt}%
90     \setlength{\partopsep}{\parskip}%
91     \setlength{\itemsep}{0pt}}}%
92     {\end{list}}
93    
94     \newenvironment{myt2}
95     {\begin{list}{$\rightsquigarrow$}%
96     {\setlength{\labelwidth}{9pt}%
97     \setlength{\labelsep}{4pt}%
98     \setlength{\leftmargin}{13pt}%
99     \setlength{\topsep}{0pt}%
100     \setlength{\partopsep}{\parskip}%
101     \setlength{\itemsep}{0pt}}}%
102     {\end{list}}
103    
104    
105     % Colors
106    
107     \definecolor{Red}{rgb}{1,0,0} % Text
108     \definecolor{Green}{rgb}{0,1,0}
109     \definecolor{Blue}{rgb}{0,0,1}
110     \definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders
111     \definecolor{Blue2}{rgb}{0,0,0.93}
112     \definecolor{Gold}{rgb}{1,0.84,0}
113     %\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background
114     \definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page
115     \definecolor{Green3}{rgb}{0,0.8,0}
116     \definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31}
117     \definecolor{Purple2}{rgb}{0.57,0.17,0.93}
118    
119     % Page and slides parameters
120    
121     \newpagestyle{slidot}
122     {\color{Gold}\rule{10mm}{1.5pt}%
123     \lower.22ex\hbox{%
124     \textcolor{Blue2}{~~University of Notre Dame~~}}%
125     \leavevmode\leaders\hrule height1.5pt\hfil}
126     {\color{Gold}\rule{5mm}{1.5pt}%
127     \lower.22ex\hbox{%
128     \textcolor{SaddleBrown}{~~Matthew Meineke~~}}%
129     \leavevmode\leaders\hrule height1.5pt\hfil%
130     \lower.32ex\hbox{%
131     \textcolor{Blue2}{~~\thepage~~}}%
132     \rule{5mm}{1.5pt}}
133    
134     \pagestyle{slidot}
135    
136    
137    
138    
139     % A couple of new counters for slide sequences
140    
141     \newcounter{sliq}
142     \newcounter{slisup}
143     \renewcommand{\thesliq}{\Roman{sliq}}
144     \renewcommand{\theslisup}{\Roman{slisup}}
145    
146     % Set the background color of every slide
147    
148     \special{!userdict begin /bop-hook {gsave
149     0.96 1 0.98 setrgbcolor clippath fill
150     grestore} def end
151     }
152    
153     % And here we are...
154    
155     \setcounter{slide}{-1}
156     %\includeonly{slide10}
157    
158    
159    
160    
161    
162    
163 mmeineke 49 % ----------------------
164     % | Title |
165     % ----------------------
166    
167 mmeineke 62 \title{A Mezzoscale Model for Phospholipid MD Simulations}
168 mmeineke 49
169     \author{Matthew A. Meineke\\
170 mmeineke 63 Department of Chemistry and Biochemistry\\
171 mmeineke 49 University of Notre Dame\\
172     Notre Dame, Indiana 46556}
173    
174     \date{\today}
175    
176     %-------------------------------------------------------------------
177     % Begin Document
178    
179     \begin{document}
180 mmeineke 62
181 mmeineke 63 %\maketitle
182 mmeineke 49
183    
184    
185 mmeineke 62
186    
187 mmeineke 63 \nobibliography{canidacy_slides}
188     \bibliographystyle{jurabib}
189 mmeineke 62
190 mmeineke 63
191     % Slide 0 Title slide
192     \begin{slide}
193     \begin{center}
194     \bfseries
195     \fontsize{24pt}{30pt}\selectfont \color{Black}
196     A Mezzoscale Model for Phospholipid MD Simulations \par
197     \fontsize{16pt}{20pt}\selectfont \color{Green3}
198     Matthew A. Meineke\par
199     \fontsize{12pt}{15pt}\selectfont \color{Purple2}
200     Department of Chemistry and Biochemisty \par
201     University of Notre Dame \par
202     Notre Dame, IN 46556 \par
203     \fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par
204     \end{center}
205     \end{slide}
206    
207 mmeineke 49 % Slide 1
208     \begin{slide} {Talk Outline}
209     \begin{itemize}
210    
211     \item Discussion of the research motivation and goals
212    
213     \item Methodology
214    
215     \item Discussion of current research and preliminary results
216    
217     \item Future research
218    
219     \end{itemize}
220     \end{slide}
221    
222    
223     % Slide 2
224    
225 mmeineke 63 \begin{slide}
226 mmeineke 62
227 mmeineke 63 \centerline{\LARGE Motivation A:
228     Long Length Scales}
229     \begin{wrapfigure}{r}{60mm}
230 mmeineke 62
231 mmeineke 63 \epsfxsize=45mm
232     \epsfbox{ripple.epsi}
233 mmeineke 62
234 mmeineke 63 \end{wrapfigure}
235 mmeineke 62
236    
237    
238 mmeineke 63
239     %\epsfbox{ripple.epsi}
240     %\begin{floatingfigure}{0.45\linewidth}
241     % \incffig{ripple.epsi}
242     %\end{floatingfigure}
243    
244    
245    
246     \mbox{}
247 mmeineke 62 Ripple phase:
248     \begin{itemize}
249    
250 mmeineke 63 \item
251 mmeineke 62 The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
252     to fluid phase.
253    
254 mmeineke 63 \item
255     Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Berne90}
256 mmeineke 62
257     \end{itemize}
258 mmeineke 63 \vspace{30mm}
259 mmeineke 62 \end{slide}
260    
261    
262    
263    
264    
265    
266 mmeineke 49 \begin{slide}{Motivation}
267 mmeineke 54
268     There is a strong need in phospholipid bilayer simulations for the
269     capability to simulate both long time and length scales. Consider the
270     following:
271    
272 mmeineke 49 \begin{itemize}
273    
274     \item Drug diffusion
275 mmeineke 63 \begin{itemize}
276     \item Some drug molecules may spend an appreciable time in the
277     membrane. Long time scale dynamics are needed to observe and
278     characterize their actions.
279     \end{itemize}
280 mmeineke 49
281 mmeineke 54 \item Ripple phase
282 mmeineke 63 \begin{itemize}
283     \item Between the bilayer gel and fluid phase there exists a ripple
284     phase. This phase has a period of about 100 - 200 $\mbox{\AA}$.
285     \end{itemize}
286 mmeineke 49
287 mmeineke 54 \item Bilayer formation dynamics
288 mmeineke 63 \begin{itemize}
289     \item Initial simulations show that bilayers can take upwards of
290     20 ns to form completely.
291     \end{itemize}
292 mmeineke 49
293     \end{itemize}
294     \end{slide}
295    
296    
297     % Slide 4
298    
299     \begin{slide}{Length Scale Simplification}
300     \begin{itemize}
301    
302 mmeineke 63 \item
303 mmeineke 49 Replace any charged interactions of the system with dipoles.
304    
305 mmeineke 63 \begin{itemize}
306     \item Allows for computational scaling approximately by $N$ for
307     dipole-dipole interactions.
308     \item In contrast, the Ewald sum scales approximately by $N \log N$.
309     \end{itemize}
310 mmeineke 49
311     \item
312     Use unified models for the water and the lipid chain.
313    
314 mmeineke 63 \begin{itemize}
315     \item Drastically reduces the number of atoms to simulate.
316     \item Number of water interactions alone reduced by $\frac{1}{3}$.
317     \end{itemize}
318 mmeineke 49 \end{itemize}
319     \end{slide}
320    
321    
322     % Slide 5
323    
324     \begin{slide}{Time Scale Simplification}
325     \begin{itemize}
326    
327     \item
328     No explicit hydrogens
329    
330 mmeineke 63 \begin{itemize}
331     \item Hydrogen bond vibration is normally one of the fastest time
332     events in a simulation.
333     \end{itemize}
334 mmeineke 49
335     \item
336     Constrain all bonds to be of fixed length.
337    
338 mmeineke 63 \begin{itemize}
339     \item As with the hydrogens, bond vibrations are the fastest motion in
340     a simulation
341     \end{itemize}
342 mmeineke 49
343     \item
344     Allows time steps of up to 3 fs with the current integrator.
345    
346     \end{itemize}
347     \end{slide}
348    
349    
350     % Slide 6
351     \begin{slide}{Molecular Dynamics}
352    
353 mmeineke 53 All of our simulations will be carried out using molecular
354     dynamics. This involves solving Newton's equations of motion using
355 mmeineke 49 the classical \emph{Hamiltonian} as follows:
356    
357     \begin{equation}
358     H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
359     \end{equation}
360    
361     Here $T(\vec{p})$ is the kinetic energy of the system which is a
362 mmeineke 53 function of momentum. In Cartesian space, $T(\vec{p})$ can be
363 mmeineke 49 written as:
364    
365     \begin{equation}
366     T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
367     \end{equation}
368    
369     \end{slide}
370    
371    
372     % Slide 7
373     \begin{slide}{The Potential}
374    
375     The main part of the simulation is then the calculation of forces from
376     the potential energy.
377    
378     \begin{equation}
379     \vec{F}(\vec{q}) = - \nabla V(\vec{q})
380     \end{equation}
381    
382     The potential itself is made of several parts.
383    
384     \begin{equation}
385 mmeineke 63 V_{tot} =
386 mmeineke 49 \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
387     \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
388     \end{equation}
389    
390     Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
391     the bond, bend, and torsion potentials, and the non-bonded
392 mmeineke 51 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
393     lenard-jones, dipole-dipole, and sticky potential interactions.
394 mmeineke 49
395     \end{slide}
396    
397    
398 mmeineke 51 % Slide 8
399 mmeineke 49
400 mmeineke 51 \begin{slide}{Soft Sticky Dipole Model}
401 mmeineke 49
402 mmeineke 52 The Soft-Sticky model for water is a reduced model.
403 mmeineke 49
404 mmeineke 52 \begin{itemize}
405 mmeineke 49
406 mmeineke 63 \item
407 mmeineke 52 The model is represented by a single point mass at the water's center
408     of mass.
409 mmeineke 49
410 mmeineke 63 \item
411 mmeineke 52 The point mass contains a fixed dipole of 2.35 D pointing from the
412 mmeineke 53 oxygens toward the hydrogens.
413 mmeineke 51
414 mmeineke 52 \end{itemize}
415 mmeineke 51
416 mmeineke 52 It's potential is as follows:
417    
418     \begin{equation}
419     V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
420 mmeineke 63 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
421 mmeineke 52 \end{equation}
422     \end{slide}
423    
424 mmeineke 54 % Slide 8b
425 mmeineke 52
426 mmeineke 54 \begin{slide}{SSD Diagram}
427    
428     \begin{center}
429     \begin{figure}
430     \epsfxsize=50mm
431     \epsfbox{ssd.epsi}
432     \end{figure}
433     \end{center}
434    
435     A Diagram of the SSD model.
436     \end{slide}
437    
438 mmeineke 52 % Slide 9
439     \begin{slide}{Hydrogen Bonding in SSD}
440    
441     It is important to note that SSD has a potential specifically to
442 mmeineke 53 recreate the hydrogen bonding network of water.
443 mmeineke 52
444 mmeineke 54
445 mmeineke 52 ICE SSD
446    
447     ICE point Dipole
448    
449 mmeineke 54
450 mmeineke 53 The importance of the hydrogen bond network is it's significant
451 mmeineke 52 contribution to the hydrophobic driving force of bilayer formation.
452     \end{slide}
453    
454    
455     % Slide 10
456    
457     \begin{slide}{The Lipid Model}
458    
459 mmeineke 53 To eliminate the need for charge-charge interactions, our lipid model
460     replaces the phospholipid head group with a single large head group
461     atom containing a freely oriented dipole. The tail is a simple alkane chain.
462    
463     Lipid Properties:
464     \begin{itemize}
465     \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$
466     \item $m_{\text{HEAD}} = 196\ \text{amu}$
467     \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms
468 mmeineke 63 \begin{itemize}
469     \item Alkane forcefield parameters taken from TraPPE
470     \end{itemize}
471 mmeineke 53 \end{itemize}
472    
473     \end{slide}
474    
475    
476     % Slide 11
477    
478     \begin{slide}{Lipid Model}
479    
480 mmeineke 52
481 mmeineke 63
482 mmeineke 52 \end{slide}
483    
484    
485 mmeineke 53 % Slide 12
486 mmeineke 52
487     \begin{slide}{Initial Runs: 25 Lipids in water}
488    
489 mmeineke 53 \textbf{Simulation Parameters:}
490 mmeineke 52
491 mmeineke 53 \begin{itemize}
492    
493     \item Starting Configuration:
494 mmeineke 63 \begin{itemize}
495     \item 25 lipid molecules arranged in a 5 x 5 square
496     \item square was surrounded by a sea of 1386 waters
497     \begin{itemize}
498     \item final water to lipid ratio was 55.4:1
499     \end{itemize}
500     \end{itemize}
501 mmeineke 53
502     \item Lipid had only a single saturated chain of 16 carbons
503    
504     \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$
505    
506     \item dt = 2.0 - 3.0 fs
507    
508     \item T = 300 K
509    
510     \item NVE ensemble
511    
512     \item Periodic boundary conditions
513     \end{itemize}
514    
515 mmeineke 52 \end{slide}
516    
517    
518 mmeineke 53 % Slide 13
519 mmeineke 52
520 mmeineke 54 \begin{slide}{5x5: Initial}
521 mmeineke 52
522 mmeineke 54 \begin{center}
523     \begin{figure}
524     \epsfxsize=50mm
525     \epsfbox{5x5-initial.eps}
526     \end{figure}
527     \end{center}
528 mmeineke 52
529 mmeineke 54 The initial configuration
530 mmeineke 52
531     \end{slide}
532    
533 mmeineke 54 \begin{slide}{5x5: Final}
534 mmeineke 52
535 mmeineke 54 \begin{center}
536     \begin{figure}
537     \epsfxsize=60mm
538     \epsfbox{5x5-1.7ns.eps}
539     \end{figure}
540     \end{center}
541    
542     The final configuration at 1.7 ns.
543    
544     \end{slide}
545    
546    
547 mmeineke 53 % Slide 14
548 mmeineke 52
549     \begin{slide}{5x5: $g(r)$}
550    
551 mmeineke 54 \begin{center}
552     \begin{figure}
553     \epsfxsize=60mm
554     \epsfbox{all5x5-HEAD-HEAD-gr.eps}
555     \end{figure}
556     \end{center}
557 mmeineke 52
558    
559 mmeineke 54 \end{slide}
560 mmeineke 52
561 mmeineke 54 \begin{slide}{5x5: $g(r)$}
562    
563     \begin{center}
564     \begin{figure}
565     \epsfxsize=60mm
566     \epsfbox{all5x5-HEAD-X-gr.eps}
567     \end{figure}
568     \end{center}
569    
570    
571 mmeineke 52 \end{slide}
572    
573    
574 mmeineke 53 % Slide 15
575 mmeineke 52
576     \begin{slide}{5x5: $\cos$ correlations}
577    
578 mmeineke 54 \begin{center}
579     \begin{figure}
580     \epsfxsize=60mm
581     \epsfbox{all5x5-HEAD-HEAD-cr.eps}
582     \end{figure}
583     \end{center}
584 mmeineke 52
585     \end{slide}
586    
587 mmeineke 54 \begin{slide}{5x5: $\cos$ correlations}
588 mmeineke 52
589 mmeineke 54 \begin{center}
590     \begin{figure}
591     \epsfxsize=60mm
592     \epsfbox{all5x5-HEAD-X-cr.eps}
593     \end{figure}
594     \end{center}
595    
596     \end{slide}
597    
598    
599 mmeineke 53 % Slide 16
600 mmeineke 52
601 mmeineke 53 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
602 mmeineke 52
603 mmeineke 53 \textbf{Simulation Parameters:}
604 mmeineke 52
605 mmeineke 53 \begin{itemize}
606    
607     \item Starting Configuration:
608 mmeineke 63 \begin{itemize}
609     \item 50 lipid molecules arranged randomly in a rectangular box
610     \item The box was then filled with 1384 waters
611     \begin{itemize}
612     \item final water to lipid ratio was 27:1
613     \end{itemize}
614     \end{itemize}
615 mmeineke 53
616     \item Lipid had only a single saturated chain of 16 carbons
617    
618     \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
619    
620     \item dt = 2.0 - 3.0 fs
621    
622     \item T = 300 K
623    
624     \item NVE ensemble
625    
626 mmeineke 63 \item Periodic boundary conditions
627 mmeineke 53
628     \end{itemize}
629    
630 mmeineke 52 \end{slide}
631    
632    
633 mmeineke 53 % Slide 17
634 mmeineke 52
635 mmeineke 54 \begin{slide}{R-50: Initial}
636 mmeineke 52
637 mmeineke 54 \begin{center}
638     \begin{figure}
639     \epsfxsize=100mm
640     \epsfbox{r50-initial.eps}
641     \end{figure}
642     \end{center}
643 mmeineke 52
644 mmeineke 54 The initial configuration
645 mmeineke 52
646     \end{slide}
647    
648 mmeineke 54 \begin{slide}{R-50: Final}
649 mmeineke 52
650 mmeineke 54 \begin{center}
651     \begin{figure}
652     \epsfxsize=100mm
653     \epsfbox{r50-521ps.eps}
654     \end{figure}
655     \end{center}
656    
657     The fianl configuration at 521 ps
658    
659     \end{slide}
660    
661    
662 mmeineke 53 % Slide 18
663 mmeineke 52
664     \begin{slide}{R-50: $g(r)$}
665    
666    
667 mmeineke 54 \begin{center}
668     \begin{figure}
669     \epsfxsize=60mm
670     \epsfbox{r50-HEAD-HEAD-gr.eps}
671     \end{figure}
672     \end{center}
673 mmeineke 52
674 mmeineke 54 \end{slide}
675 mmeineke 52
676 mmeineke 54
677     \begin{slide}{R-50: $g(r)$}
678    
679    
680     \begin{center}
681     \begin{figure}
682     \epsfxsize=60mm
683     \epsfbox{r50-HEAD-X-gr.eps}
684     \end{figure}
685     \end{center}
686    
687 mmeineke 52 \end{slide}
688    
689    
690 mmeineke 53 % Slide 19
691 mmeineke 52
692     \begin{slide}{R-50: $\cos$ correlations}
693    
694    
695 mmeineke 54 \begin{center}
696     \begin{figure}
697     \epsfxsize=60mm
698     \epsfbox{r50-HEAD-HEAD-cr.eps}
699     \end{figure}
700     \end{center}
701    
702 mmeineke 52 \end{slide}
703    
704 mmeineke 54 \begin{slide}{R-50: $\cos$ correlations}
705 mmeineke 52
706 mmeineke 54
707     \begin{center}
708     \begin{figure}
709     \epsfxsize=60mm
710     \epsfbox{r50-HEAD-X-cr.eps}
711     \end{figure}
712     \end{center}
713    
714     \end{slide}
715    
716    
717 mmeineke 53 % Slide 20
718 mmeineke 52
719     \begin{slide}{Future Directions}
720    
721 mmeineke 53 \begin{itemize}
722 mmeineke 52
723 mmeineke 63 \item
724 mmeineke 53 Simulation of a lipid with 2 chains, or perhaps expand the current
725     unified chain atoms to take up greater steric bulk.
726    
727 mmeineke 63 \item
728 mmeineke 53 Incorporate constant pressure and constant temperature into the ensemble.
729    
730     \item
731     Parrellize the code.
732    
733     \end{itemize}
734 mmeineke 52 \end{slide}
735    
736    
737 mmeineke 53 % Slide 21
738 mmeineke 52
739     \begin{slide}{Acknowledgements}
740    
741 mmeineke 53 \begin{itemize}
742 mmeineke 52
743 mmeineke 53 \item Dr. J. Daniel Gezelter
744     \item Christopher Fennel
745     \item Charles Vardeman
746     \item Teng Lin
747 mmeineke 52
748 mmeineke 53 \end{itemize}
749    
750     Funding by:
751     \begin{itemize}
752     \item Dreyfus New Faculty Award
753     \end{itemize}
754    
755 mmeineke 52 \end{slide}
756    
757    
758    
759    
760    
761    
762    
763    
764 mmeineke 49 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
765    
766     \end{document}