ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 64
Committed: Fri Aug 9 21:23:42 2002 UTC (22 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 15698 byte(s)
Log Message:
fixed the citations. continueing to clean up the slides.

File Contents

# User Rev Content
1 mmeineke 49 % temporary preamble
2    
3 mmeineke 54 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4    
5 mmeineke 64 \documentclass[portrait]{seminar}
6 mmeineke 63 \usepackage[usenames,dvips]{pstcol}
7     \usepackage{semcolor}
8     \usepackage[dvips]{color}
9     %\usepackage[dvips]{graphicx}
10 mmeineke 49 \usepackage{amsmath}
11 mmeineke 52 \usepackage{amssymb}
12 mmeineke 62 \usepackage{wrapfig}
13 mmeineke 49 \usepackage{epsf}
14    
15 mmeineke 64 \usepackage[citefull=first, chicago, pages=always]{jurabib}
16 mmeineke 63
17    
18     \jurabibsetup{bibformat={tabular,ibidem,numbered}}
19     \centerslidesfalse
20    
21     % -----------------------------
22     % | preamble + macros and crap |
23     % -----------------------------
24    
25    
26     % Basic Color Defs used within this file
27     \definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue
28     \definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue
29     \definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red
30     \definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue
31    
32     %\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color
33    
34     % Change itemize environment to use funky color bullets
35     \renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}}
36     \renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}}
37     \renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}}
38    
39    
40    
41    
42    
43     % Input corrections to 'seminar'
44    
45     \input{seminar.bug}
46     \input{seminar.bg2}
47    
48     % Slides parameters: general setup
49    
50     \centerslidesfalse % Text not centered
51     \slideframe{none} % No frame borders
52     \raggedslides[2em] % Semi-ragged-right text
53     \slidestyle{empty} % No labels
54     \rotateheaderstrue % Header and slide orientation synchronized
55    
56     % Slides dimensions and header placement
57    
58 mmeineke 64 \addtolength{\slidewidth}{10mm}
59 mmeineke 63 \addtolength{\slideheight}{10mm}
60     \renewcommand{\slideleftmargin}{10mm}
61     \renewcommand{\sliderightmargin}{10mm}
62     \renewcommand{\slidetopmargin}{10mm}
63     \renewcommand{\slidebottommargin}{15mm}
64    
65     % Landscape printing sequence (for dvips)
66    
67     \renewcommand{\printlandscape}{\special{landscape}}
68    
69    
70     % My-itemize environment (3 levels): essentially not indented from
71     % the left margin. New second- and third-level item markers.
72    
73     \newenvironment{myt}
74     {\begin{list}{$\bullet$}%
75     {\setlength{\labelwidth}{9pt}%
76     \setlength{\labelsep}{4pt}%
77     \setlength{\leftmargin}{13pt}%
78     \setlength{\topsep}{\parskip}%
79     \setlength{\partopsep}{\parskip}%
80     \setlength{\itemsep}{0pt}}}%
81     {\end{list}}
82    
83    
84     \newenvironment{myt1}
85     {\begin{list}{$\star$}%
86     {\setlength{\labelwidth}{9pt}%
87     \setlength{\labelsep}{4pt}%
88     \setlength{\leftmargin}{13pt}%
89     \setlength{\topsep}{0pt}%
90     \setlength{\partopsep}{\parskip}%
91     \setlength{\itemsep}{0pt}}}%
92     {\end{list}}
93    
94     \newenvironment{myt2}
95     {\begin{list}{$\rightsquigarrow$}%
96     {\setlength{\labelwidth}{9pt}%
97     \setlength{\labelsep}{4pt}%
98     \setlength{\leftmargin}{13pt}%
99     \setlength{\topsep}{0pt}%
100     \setlength{\partopsep}{\parskip}%
101     \setlength{\itemsep}{0pt}}}%
102     {\end{list}}
103    
104    
105     % Colors
106    
107     \definecolor{Red}{rgb}{1,0,0} % Text
108     \definecolor{Green}{rgb}{0,1,0}
109     \definecolor{Blue}{rgb}{0,0,1}
110     \definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders
111     \definecolor{Blue2}{rgb}{0,0,0.93}
112     \definecolor{Gold}{rgb}{1,0.84,0}
113     %\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background
114     \definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page
115     \definecolor{Green3}{rgb}{0,0.8,0}
116     \definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31}
117     \definecolor{Purple2}{rgb}{0.57,0.17,0.93}
118    
119     % Page and slides parameters
120    
121     \newpagestyle{slidot}
122     {\color{Gold}\rule{10mm}{1.5pt}%
123     \lower.22ex\hbox{%
124     \textcolor{Blue2}{~~University of Notre Dame~~}}%
125     \leavevmode\leaders\hrule height1.5pt\hfil}
126     {\color{Gold}\rule{5mm}{1.5pt}%
127     \lower.22ex\hbox{%
128     \textcolor{SaddleBrown}{~~Matthew Meineke~~}}%
129     \leavevmode\leaders\hrule height1.5pt\hfil%
130     \lower.32ex\hbox{%
131     \textcolor{Blue2}{~~\thepage~~}}%
132     \rule{5mm}{1.5pt}}
133    
134     \pagestyle{slidot}
135    
136    
137    
138    
139     % A couple of new counters for slide sequences
140    
141     \newcounter{sliq}
142     \newcounter{slisup}
143     \renewcommand{\thesliq}{\Roman{sliq}}
144     \renewcommand{\theslisup}{\Roman{slisup}}
145    
146     % Set the background color of every slide
147    
148     \special{!userdict begin /bop-hook {gsave
149 mmeineke 64 1.0 1.0 1.0 setrgbcolor clippath fill
150 mmeineke 63 grestore} def end
151     }
152    
153     % And here we are...
154    
155     \setcounter{slide}{-1}
156     %\includeonly{slide10}
157    
158    
159 mmeineke 64 % setup the jurabib style
160 mmeineke 63
161 mmeineke 64 \renewcommand{\jbbtasep}{; } % bta = between two authors sep
162     \renewcommand{\jbbfsasep}{; } % bfsa = between first and second author sep
163     \renewcommand{\jbbstasep}{; } % bsta = between second and third author sep
164     %\renewcommand{\bibansep}{. } % seperator after name
165 mmeineke 63
166 mmeineke 64 \renewcommand{\bibtfont}{\textit} % change book title to italics
167     \renewcommand{\bibjtfont}{\textit} % change journal title to italics
168     \renewcommand{\bibapifont}[1]{} % gets rid of the article title in citation
169 mmeineke 63
170    
171 mmeineke 64
172    
173    
174    
175 mmeineke 49 % ----------------------
176     % | Title |
177     % ----------------------
178    
179 mmeineke 62 \title{A Mezzoscale Model for Phospholipid MD Simulations}
180 mmeineke 49
181     \author{Matthew A. Meineke\\
182 mmeineke 63 Department of Chemistry and Biochemistry\\
183 mmeineke 49 University of Notre Dame\\
184     Notre Dame, Indiana 46556}
185    
186     \date{\today}
187    
188     %-------------------------------------------------------------------
189     % Begin Document
190    
191     \begin{document}
192 mmeineke 62
193 mmeineke 63 %\maketitle
194 mmeineke 49
195    
196    
197 mmeineke 62
198    
199 mmeineke 63 \nobibliography{canidacy_slides}
200     \bibliographystyle{jurabib}
201 mmeineke 62
202 mmeineke 63
203     % Slide 0 Title slide
204     \begin{slide}
205     \begin{center}
206     \bfseries
207     \fontsize{24pt}{30pt}\selectfont \color{Black}
208     A Mezzoscale Model for Phospholipid MD Simulations \par
209     \fontsize{16pt}{20pt}\selectfont \color{Green3}
210     Matthew A. Meineke\par
211     \fontsize{12pt}{15pt}\selectfont \color{Purple2}
212     Department of Chemistry and Biochemisty \par
213     University of Notre Dame \par
214     Notre Dame, IN 46556 \par
215     \fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par
216     \end{center}
217     \end{slide}
218    
219 mmeineke 64
220 mmeineke 49 % Slide 1
221 mmeineke 64 \begin{slide} {\LARGE Talk Outline}
222 mmeineke 49 \begin{itemize}
223    
224     \item Discussion of the research motivation and goals
225    
226     \item Methodology
227    
228     \item Discussion of current research and preliminary results
229    
230     \item Future research
231    
232     \end{itemize}
233     \end{slide}
234    
235    
236     % Slide 2
237    
238 mmeineke 63 \begin{slide}
239 mmeineke 62
240 mmeineke 64 \centerline{\LARGE Motivation A: Long Length Scales}
241    
242 mmeineke 63 \begin{wrapfigure}{r}{60mm}
243 mmeineke 62
244 mmeineke 63 \epsfxsize=45mm
245     \epsfbox{ripple.epsi}
246 mmeineke 62
247 mmeineke 63 \end{wrapfigure}
248 mmeineke 62
249    
250    
251 mmeineke 63
252     %\epsfbox{ripple.epsi}
253     %\begin{floatingfigure}{0.45\linewidth}
254     % \incffig{ripple.epsi}
255     %\end{floatingfigure}
256    
257    
258    
259     \mbox{}
260 mmeineke 62 Ripple phase:
261     \begin{itemize}
262    
263 mmeineke 63 \item
264 mmeineke 62 The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
265     to fluid phase.
266    
267 mmeineke 63 \item
268 mmeineke 64 Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Cevc87}
269 mmeineke 62
270 mmeineke 64 \item
271     Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$
272     on a side.\footcite{Venable93}\footcite{Heller93}
273    
274 mmeineke 62 \end{itemize}
275 mmeineke 64 \vspace{10mm}
276 mmeineke 62 \end{slide}
277    
278    
279 mmeineke 64 \begin{slide}{\LARGE Motivation B: Long Time Scales}
280 mmeineke 62
281 mmeineke 64 \begin{itemize}
282 mmeineke 62
283 mmeineke 64 \item
284     Drug Diffussion
285     \begin{itemize}
286     \item
287     Some drug molecules may spend appreciable amountsd of time in the
288     membrane
289 mmeineke 62
290 mmeineke 64 \item
291     Long time scale dynamics are need to observe and charecterize their
292     actions
293     \end{itemize}
294 mmeineke 62
295 mmeineke 64 \item
296     Bilayer Formation Dynamics
297     \begin{itemize}
298     \item
299     Current bilayer simulations indicate that lipids can take nearly
300     20 ns to form completely.\footcite{Marrink01}
301     \end{itemize}
302     \end{itemize}
303     \end{slide}
304 mmeineke 54
305    
306 mmeineke 64 % Slide 4
307 mmeineke 49
308 mmeineke 64 \begin{slide}{\LARGE Length Scale Simplification I}
309 mmeineke 49
310    
311 mmeineke 64 Replace any charged interactions of the system with dipoles.
312 mmeineke 49
313 mmeineke 64 \begin{itemize}
314     \item Allows for computational scaling approximately by $N$ for
315     dipole-dipole interactions.
316     \begin{itemize}
317     \item Relatively short range, $\frac{1}{r^3}$, interactions allow
318     the application of computational simplification algorithms,
319     ie. neighbor lists.
320     \end{itemize}
321    
322     \item In contrast, the Ewald sum, needed for calculating charge - charge
323     interactions, scales approximately by $N \log N$.
324 mmeineke 49 \end{itemize}
325     \end{slide}
326    
327 mmeineke 64 \begin{slide}{\LARGE Length Scale Simplification II}
328 mmeineke 49
329 mmeineke 64 Use unified models for the water and the lipid chain.
330 mmeineke 49
331     \begin{itemize}
332 mmeineke 64 \item
333     Drastically reduces the number of atoms to simulate.
334 mmeineke 49
335 mmeineke 64 \item
336     Number of water - water interactions alone reduced by $\frac{1}{9}$.
337 mmeineke 49
338 mmeineke 64 \end{itemize}
339 mmeineke 49
340 mmeineke 64 ADD FIGURE HERE
341 mmeineke 49
342 mmeineke 64
343 mmeineke 49 \end{slide}
344    
345    
346     % Slide 5
347    
348     \begin{slide}{Time Scale Simplification}
349     \begin{itemize}
350    
351     \item
352     No explicit hydrogens
353    
354 mmeineke 63 \begin{itemize}
355     \item Hydrogen bond vibration is normally one of the fastest time
356     events in a simulation.
357     \end{itemize}
358 mmeineke 49
359     \item
360     Constrain all bonds to be of fixed length.
361    
362 mmeineke 63 \begin{itemize}
363     \item As with the hydrogens, bond vibrations are the fastest motion in
364     a simulation
365     \end{itemize}
366 mmeineke 49
367     \item
368     Allows time steps of up to 3 fs with the current integrator.
369    
370     \end{itemize}
371     \end{slide}
372    
373    
374     % Slide 6
375     \begin{slide}{Molecular Dynamics}
376    
377 mmeineke 53 All of our simulations will be carried out using molecular
378     dynamics. This involves solving Newton's equations of motion using
379 mmeineke 49 the classical \emph{Hamiltonian} as follows:
380    
381     \begin{equation}
382     H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
383     \end{equation}
384    
385     Here $T(\vec{p})$ is the kinetic energy of the system which is a
386 mmeineke 53 function of momentum. In Cartesian space, $T(\vec{p})$ can be
387 mmeineke 49 written as:
388    
389     \begin{equation}
390     T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
391     \end{equation}
392    
393     \end{slide}
394    
395    
396     % Slide 7
397     \begin{slide}{The Potential}
398    
399     The main part of the simulation is then the calculation of forces from
400     the potential energy.
401    
402     \begin{equation}
403     \vec{F}(\vec{q}) = - \nabla V(\vec{q})
404     \end{equation}
405    
406     The potential itself is made of several parts.
407    
408     \begin{equation}
409 mmeineke 63 V_{tot} =
410 mmeineke 49 \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
411     \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
412     \end{equation}
413    
414     Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
415     the bond, bend, and torsion potentials, and the non-bonded
416 mmeineke 51 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
417     lenard-jones, dipole-dipole, and sticky potential interactions.
418 mmeineke 49
419     \end{slide}
420    
421    
422 mmeineke 51 % Slide 8
423 mmeineke 49
424 mmeineke 51 \begin{slide}{Soft Sticky Dipole Model}
425 mmeineke 49
426 mmeineke 52 The Soft-Sticky model for water is a reduced model.
427 mmeineke 49
428 mmeineke 52 \begin{itemize}
429 mmeineke 49
430 mmeineke 63 \item
431 mmeineke 52 The model is represented by a single point mass at the water's center
432     of mass.
433 mmeineke 49
434 mmeineke 63 \item
435 mmeineke 52 The point mass contains a fixed dipole of 2.35 D pointing from the
436 mmeineke 53 oxygens toward the hydrogens.
437 mmeineke 51
438 mmeineke 52 \end{itemize}
439 mmeineke 51
440 mmeineke 52 It's potential is as follows:
441    
442     \begin{equation}
443     V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
444 mmeineke 63 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
445 mmeineke 52 \end{equation}
446     \end{slide}
447    
448 mmeineke 54 % Slide 8b
449 mmeineke 52
450 mmeineke 54 \begin{slide}{SSD Diagram}
451    
452     \begin{center}
453     \begin{figure}
454     \epsfxsize=50mm
455     \epsfbox{ssd.epsi}
456     \end{figure}
457     \end{center}
458    
459     A Diagram of the SSD model.
460     \end{slide}
461    
462 mmeineke 52 % Slide 9
463     \begin{slide}{Hydrogen Bonding in SSD}
464    
465     It is important to note that SSD has a potential specifically to
466 mmeineke 53 recreate the hydrogen bonding network of water.
467 mmeineke 52
468 mmeineke 54
469 mmeineke 52 ICE SSD
470    
471     ICE point Dipole
472    
473 mmeineke 54
474 mmeineke 53 The importance of the hydrogen bond network is it's significant
475 mmeineke 52 contribution to the hydrophobic driving force of bilayer formation.
476     \end{slide}
477    
478    
479     % Slide 10
480    
481     \begin{slide}{The Lipid Model}
482    
483 mmeineke 53 To eliminate the need for charge-charge interactions, our lipid model
484     replaces the phospholipid head group with a single large head group
485     atom containing a freely oriented dipole. The tail is a simple alkane chain.
486    
487     Lipid Properties:
488     \begin{itemize}
489     \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$
490     \item $m_{\text{HEAD}} = 196\ \text{amu}$
491     \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms
492 mmeineke 63 \begin{itemize}
493     \item Alkane forcefield parameters taken from TraPPE
494     \end{itemize}
495 mmeineke 53 \end{itemize}
496    
497     \end{slide}
498    
499    
500     % Slide 11
501    
502     \begin{slide}{Lipid Model}
503    
504 mmeineke 52
505 mmeineke 63
506 mmeineke 52 \end{slide}
507    
508    
509 mmeineke 53 % Slide 12
510 mmeineke 52
511     \begin{slide}{Initial Runs: 25 Lipids in water}
512    
513 mmeineke 53 \textbf{Simulation Parameters:}
514 mmeineke 52
515 mmeineke 53 \begin{itemize}
516    
517     \item Starting Configuration:
518 mmeineke 63 \begin{itemize}
519     \item 25 lipid molecules arranged in a 5 x 5 square
520     \item square was surrounded by a sea of 1386 waters
521     \begin{itemize}
522     \item final water to lipid ratio was 55.4:1
523     \end{itemize}
524     \end{itemize}
525 mmeineke 53
526     \item Lipid had only a single saturated chain of 16 carbons
527    
528     \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$
529    
530     \item dt = 2.0 - 3.0 fs
531    
532     \item T = 300 K
533    
534     \item NVE ensemble
535    
536     \item Periodic boundary conditions
537     \end{itemize}
538    
539 mmeineke 52 \end{slide}
540    
541    
542 mmeineke 53 % Slide 13
543 mmeineke 52
544 mmeineke 54 \begin{slide}{5x5: Initial}
545 mmeineke 52
546 mmeineke 54 \begin{center}
547     \begin{figure}
548     \epsfxsize=50mm
549     \epsfbox{5x5-initial.eps}
550     \end{figure}
551     \end{center}
552 mmeineke 52
553 mmeineke 54 The initial configuration
554 mmeineke 52
555     \end{slide}
556    
557 mmeineke 54 \begin{slide}{5x5: Final}
558 mmeineke 52
559 mmeineke 54 \begin{center}
560     \begin{figure}
561     \epsfxsize=60mm
562     \epsfbox{5x5-1.7ns.eps}
563     \end{figure}
564     \end{center}
565    
566     The final configuration at 1.7 ns.
567    
568     \end{slide}
569    
570    
571 mmeineke 53 % Slide 14
572 mmeineke 52
573     \begin{slide}{5x5: $g(r)$}
574    
575 mmeineke 54 \begin{center}
576     \begin{figure}
577     \epsfxsize=60mm
578     \epsfbox{all5x5-HEAD-HEAD-gr.eps}
579     \end{figure}
580     \end{center}
581 mmeineke 52
582    
583 mmeineke 54 \end{slide}
584 mmeineke 52
585 mmeineke 54 \begin{slide}{5x5: $g(r)$}
586    
587     \begin{center}
588     \begin{figure}
589     \epsfxsize=60mm
590     \epsfbox{all5x5-HEAD-X-gr.eps}
591     \end{figure}
592     \end{center}
593    
594    
595 mmeineke 52 \end{slide}
596    
597    
598 mmeineke 53 % Slide 15
599 mmeineke 52
600     \begin{slide}{5x5: $\cos$ correlations}
601    
602 mmeineke 54 \begin{center}
603     \begin{figure}
604     \epsfxsize=60mm
605     \epsfbox{all5x5-HEAD-HEAD-cr.eps}
606     \end{figure}
607     \end{center}
608 mmeineke 52
609     \end{slide}
610    
611 mmeineke 54 \begin{slide}{5x5: $\cos$ correlations}
612 mmeineke 52
613 mmeineke 54 \begin{center}
614     \begin{figure}
615     \epsfxsize=60mm
616     \epsfbox{all5x5-HEAD-X-cr.eps}
617     \end{figure}
618     \end{center}
619    
620     \end{slide}
621    
622    
623 mmeineke 53 % Slide 16
624 mmeineke 52
625 mmeineke 53 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
626 mmeineke 52
627 mmeineke 53 \textbf{Simulation Parameters:}
628 mmeineke 52
629 mmeineke 53 \begin{itemize}
630    
631     \item Starting Configuration:
632 mmeineke 63 \begin{itemize}
633     \item 50 lipid molecules arranged randomly in a rectangular box
634     \item The box was then filled with 1384 waters
635     \begin{itemize}
636     \item final water to lipid ratio was 27:1
637     \end{itemize}
638     \end{itemize}
639 mmeineke 53
640     \item Lipid had only a single saturated chain of 16 carbons
641    
642     \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
643    
644     \item dt = 2.0 - 3.0 fs
645    
646     \item T = 300 K
647    
648     \item NVE ensemble
649    
650 mmeineke 63 \item Periodic boundary conditions
651 mmeineke 53
652     \end{itemize}
653    
654 mmeineke 52 \end{slide}
655    
656    
657 mmeineke 53 % Slide 17
658 mmeineke 52
659 mmeineke 54 \begin{slide}{R-50: Initial}
660 mmeineke 52
661 mmeineke 54 \begin{center}
662     \begin{figure}
663     \epsfxsize=100mm
664     \epsfbox{r50-initial.eps}
665     \end{figure}
666     \end{center}
667 mmeineke 52
668 mmeineke 54 The initial configuration
669 mmeineke 52
670     \end{slide}
671    
672 mmeineke 54 \begin{slide}{R-50: Final}
673 mmeineke 52
674 mmeineke 54 \begin{center}
675     \begin{figure}
676     \epsfxsize=100mm
677     \epsfbox{r50-521ps.eps}
678     \end{figure}
679     \end{center}
680    
681     The fianl configuration at 521 ps
682    
683     \end{slide}
684    
685    
686 mmeineke 53 % Slide 18
687 mmeineke 52
688     \begin{slide}{R-50: $g(r)$}
689    
690    
691 mmeineke 54 \begin{center}
692     \begin{figure}
693     \epsfxsize=60mm
694     \epsfbox{r50-HEAD-HEAD-gr.eps}
695     \end{figure}
696     \end{center}
697 mmeineke 52
698 mmeineke 54 \end{slide}
699 mmeineke 52
700 mmeineke 54
701     \begin{slide}{R-50: $g(r)$}
702    
703    
704     \begin{center}
705     \begin{figure}
706     \epsfxsize=60mm
707     \epsfbox{r50-HEAD-X-gr.eps}
708     \end{figure}
709     \end{center}
710    
711 mmeineke 52 \end{slide}
712    
713    
714 mmeineke 53 % Slide 19
715 mmeineke 52
716     \begin{slide}{R-50: $\cos$ correlations}
717    
718    
719 mmeineke 54 \begin{center}
720     \begin{figure}
721     \epsfxsize=60mm
722     \epsfbox{r50-HEAD-HEAD-cr.eps}
723     \end{figure}
724     \end{center}
725    
726 mmeineke 52 \end{slide}
727    
728 mmeineke 54 \begin{slide}{R-50: $\cos$ correlations}
729 mmeineke 52
730 mmeineke 54
731     \begin{center}
732     \begin{figure}
733     \epsfxsize=60mm
734     \epsfbox{r50-HEAD-X-cr.eps}
735     \end{figure}
736     \end{center}
737    
738     \end{slide}
739    
740    
741 mmeineke 53 % Slide 20
742 mmeineke 52
743     \begin{slide}{Future Directions}
744    
745 mmeineke 53 \begin{itemize}
746 mmeineke 52
747 mmeineke 63 \item
748 mmeineke 53 Simulation of a lipid with 2 chains, or perhaps expand the current
749     unified chain atoms to take up greater steric bulk.
750    
751 mmeineke 63 \item
752 mmeineke 53 Incorporate constant pressure and constant temperature into the ensemble.
753    
754     \item
755     Parrellize the code.
756    
757     \end{itemize}
758 mmeineke 52 \end{slide}
759    
760    
761 mmeineke 53 % Slide 21
762 mmeineke 52
763     \begin{slide}{Acknowledgements}
764    
765 mmeineke 53 \begin{itemize}
766 mmeineke 52
767 mmeineke 53 \item Dr. J. Daniel Gezelter
768     \item Christopher Fennel
769     \item Charles Vardeman
770     \item Teng Lin
771 mmeineke 64 \item Megan Sprauge
772     \item Patrick Conforti
773     \item Dan Combest
774 mmeineke 52
775 mmeineke 53 \end{itemize}
776    
777     Funding by:
778     \begin{itemize}
779     \item Dreyfus New Faculty Award
780     \end{itemize}
781    
782 mmeineke 52 \end{slide}
783    
784    
785    
786    
787    
788    
789    
790    
791 mmeineke 49 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
792    
793     \end{document}