ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 65
Committed: Mon Aug 12 22:12:45 2002 UTC (22 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 15713 byte(s)
Log Message:
made a new figure. trying to add it to the slide

File Contents

# User Rev Content
1 mmeineke 49 % temporary preamble
2    
3 mmeineke 54 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4    
5 mmeineke 64 \documentclass[portrait]{seminar}
6 mmeineke 63 \usepackage[usenames,dvips]{pstcol}
7     \usepackage{semcolor}
8     \usepackage[dvips]{color}
9     %\usepackage[dvips]{graphicx}
10 mmeineke 49 \usepackage{amsmath}
11 mmeineke 52 \usepackage{amssymb}
12 mmeineke 62 \usepackage{wrapfig}
13 mmeineke 49 \usepackage{epsf}
14    
15 mmeineke 64 \usepackage[citefull=first, chicago, pages=always]{jurabib}
16 mmeineke 63
17    
18     \jurabibsetup{bibformat={tabular,ibidem,numbered}}
19     \centerslidesfalse
20    
21     % -----------------------------
22     % | preamble + macros and crap |
23     % -----------------------------
24    
25    
26     % Basic Color Defs used within this file
27     \definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue
28     \definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue
29     \definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red
30     \definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue
31    
32     %\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color
33    
34     % Change itemize environment to use funky color bullets
35     \renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}}
36     \renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}}
37     \renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}}
38    
39    
40    
41    
42    
43     % Input corrections to 'seminar'
44    
45     \input{seminar.bug}
46     \input{seminar.bg2}
47    
48     % Slides parameters: general setup
49    
50     \centerslidesfalse % Text not centered
51     \slideframe{none} % No frame borders
52     \raggedslides[2em] % Semi-ragged-right text
53     \slidestyle{empty} % No labels
54     \rotateheaderstrue % Header and slide orientation synchronized
55    
56     % Slides dimensions and header placement
57    
58 mmeineke 64 \addtolength{\slidewidth}{10mm}
59 mmeineke 63 \addtolength{\slideheight}{10mm}
60     \renewcommand{\slideleftmargin}{10mm}
61     \renewcommand{\sliderightmargin}{10mm}
62     \renewcommand{\slidetopmargin}{10mm}
63     \renewcommand{\slidebottommargin}{15mm}
64    
65     % Landscape printing sequence (for dvips)
66    
67     \renewcommand{\printlandscape}{\special{landscape}}
68    
69    
70     % My-itemize environment (3 levels): essentially not indented from
71     % the left margin. New second- and third-level item markers.
72    
73     \newenvironment{myt}
74     {\begin{list}{$\bullet$}%
75     {\setlength{\labelwidth}{9pt}%
76     \setlength{\labelsep}{4pt}%
77     \setlength{\leftmargin}{13pt}%
78     \setlength{\topsep}{\parskip}%
79     \setlength{\partopsep}{\parskip}%
80     \setlength{\itemsep}{0pt}}}%
81     {\end{list}}
82    
83    
84     \newenvironment{myt1}
85     {\begin{list}{$\star$}%
86     {\setlength{\labelwidth}{9pt}%
87     \setlength{\labelsep}{4pt}%
88     \setlength{\leftmargin}{13pt}%
89     \setlength{\topsep}{0pt}%
90     \setlength{\partopsep}{\parskip}%
91     \setlength{\itemsep}{0pt}}}%
92     {\end{list}}
93    
94     \newenvironment{myt2}
95     {\begin{list}{$\rightsquigarrow$}%
96     {\setlength{\labelwidth}{9pt}%
97     \setlength{\labelsep}{4pt}%
98     \setlength{\leftmargin}{13pt}%
99     \setlength{\topsep}{0pt}%
100     \setlength{\partopsep}{\parskip}%
101     \setlength{\itemsep}{0pt}}}%
102     {\end{list}}
103    
104    
105     % Colors
106    
107     \definecolor{Red}{rgb}{1,0,0} % Text
108     \definecolor{Green}{rgb}{0,1,0}
109     \definecolor{Blue}{rgb}{0,0,1}
110     \definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders
111     \definecolor{Blue2}{rgb}{0,0,0.93}
112     \definecolor{Gold}{rgb}{1,0.84,0}
113     %\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background
114     \definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page
115     \definecolor{Green3}{rgb}{0,0.8,0}
116     \definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31}
117     \definecolor{Purple2}{rgb}{0.57,0.17,0.93}
118    
119     % Page and slides parameters
120    
121     \newpagestyle{slidot}
122     {\color{Gold}\rule{10mm}{1.5pt}%
123     \lower.22ex\hbox{%
124     \textcolor{Blue2}{~~University of Notre Dame~~}}%
125     \leavevmode\leaders\hrule height1.5pt\hfil}
126     {\color{Gold}\rule{5mm}{1.5pt}%
127     \lower.22ex\hbox{%
128     \textcolor{SaddleBrown}{~~Matthew Meineke~~}}%
129     \leavevmode\leaders\hrule height1.5pt\hfil%
130     \lower.32ex\hbox{%
131     \textcolor{Blue2}{~~\thepage~~}}%
132     \rule{5mm}{1.5pt}}
133    
134     \pagestyle{slidot}
135    
136    
137    
138    
139     % A couple of new counters for slide sequences
140    
141     \newcounter{sliq}
142     \newcounter{slisup}
143     \renewcommand{\thesliq}{\Roman{sliq}}
144     \renewcommand{\theslisup}{\Roman{slisup}}
145    
146     % Set the background color of every slide
147    
148     \special{!userdict begin /bop-hook {gsave
149 mmeineke 64 1.0 1.0 1.0 setrgbcolor clippath fill
150 mmeineke 63 grestore} def end
151     }
152    
153     % And here we are...
154    
155     \setcounter{slide}{-1}
156     %\includeonly{slide10}
157    
158    
159 mmeineke 64 % setup the jurabib style
160 mmeineke 63
161 mmeineke 64 \renewcommand{\jbbtasep}{; } % bta = between two authors sep
162     \renewcommand{\jbbfsasep}{; } % bfsa = between first and second author sep
163     \renewcommand{\jbbstasep}{; } % bsta = between second and third author sep
164     %\renewcommand{\bibansep}{. } % seperator after name
165 mmeineke 63
166 mmeineke 64 \renewcommand{\bibtfont}{\textit} % change book title to italics
167     \renewcommand{\bibjtfont}{\textit} % change journal title to italics
168     \renewcommand{\bibapifont}[1]{} % gets rid of the article title in citation
169 mmeineke 63
170    
171 mmeineke 64
172    
173    
174    
175 mmeineke 49 % ----------------------
176     % | Title |
177     % ----------------------
178    
179 mmeineke 62 \title{A Mezzoscale Model for Phospholipid MD Simulations}
180 mmeineke 49
181     \author{Matthew A. Meineke\\
182 mmeineke 63 Department of Chemistry and Biochemistry\\
183 mmeineke 49 University of Notre Dame\\
184     Notre Dame, Indiana 46556}
185    
186     \date{\today}
187    
188     %-------------------------------------------------------------------
189     % Begin Document
190    
191     \begin{document}
192 mmeineke 62
193 mmeineke 63 %\maketitle
194 mmeineke 49
195    
196    
197 mmeineke 62
198    
199 mmeineke 63 \nobibliography{canidacy_slides}
200     \bibliographystyle{jurabib}
201 mmeineke 62
202 mmeineke 63
203     % Slide 0 Title slide
204     \begin{slide}
205     \begin{center}
206     \bfseries
207     \fontsize{24pt}{30pt}\selectfont \color{Black}
208     A Mezzoscale Model for Phospholipid MD Simulations \par
209     \fontsize{16pt}{20pt}\selectfont \color{Green3}
210     Matthew A. Meineke\par
211     \fontsize{12pt}{15pt}\selectfont \color{Purple2}
212     Department of Chemistry and Biochemisty \par
213     University of Notre Dame \par
214     Notre Dame, IN 46556 \par
215     \fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par
216     \end{center}
217     \end{slide}
218    
219 mmeineke 64
220 mmeineke 49 % Slide 1
221 mmeineke 64 \begin{slide} {\LARGE Talk Outline}
222 mmeineke 49 \begin{itemize}
223    
224     \item Discussion of the research motivation and goals
225    
226     \item Methodology
227    
228     \item Discussion of current research and preliminary results
229    
230     \item Future research
231    
232     \end{itemize}
233     \end{slide}
234    
235    
236     % Slide 2
237    
238 mmeineke 63 \begin{slide}
239 mmeineke 62
240 mmeineke 64 \centerline{\LARGE Motivation A: Long Length Scales}
241    
242 mmeineke 63 \begin{wrapfigure}{r}{60mm}
243 mmeineke 62
244 mmeineke 63 \epsfxsize=45mm
245     \epsfbox{ripple.epsi}
246 mmeineke 62
247 mmeineke 63 \end{wrapfigure}
248 mmeineke 62
249    
250    
251 mmeineke 63
252     %\epsfbox{ripple.epsi}
253     %\begin{floatingfigure}{0.45\linewidth}
254     % \incffig{ripple.epsi}
255     %\end{floatingfigure}
256    
257    
258    
259     \mbox{}
260 mmeineke 62 Ripple phase:
261     \begin{itemize}
262    
263 mmeineke 63 \item
264 mmeineke 62 The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
265     to fluid phase.
266    
267 mmeineke 63 \item
268 mmeineke 64 Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Cevc87}
269 mmeineke 62
270 mmeineke 64 \item
271     Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$
272     on a side.\footcite{Venable93}\footcite{Heller93}
273    
274 mmeineke 62 \end{itemize}
275 mmeineke 64 \vspace{10mm}
276 mmeineke 62 \end{slide}
277    
278    
279 mmeineke 64 \begin{slide}{\LARGE Motivation B: Long Time Scales}
280 mmeineke 62
281 mmeineke 64 \begin{itemize}
282 mmeineke 62
283 mmeineke 64 \item
284     Drug Diffussion
285     \begin{itemize}
286     \item
287     Some drug molecules may spend appreciable amountsd of time in the
288     membrane
289 mmeineke 62
290 mmeineke 64 \item
291     Long time scale dynamics are need to observe and charecterize their
292     actions
293     \end{itemize}
294 mmeineke 62
295 mmeineke 64 \item
296     Bilayer Formation Dynamics
297     \begin{itemize}
298     \item
299     Current bilayer simulations indicate that lipids can take nearly
300     20 ns to form completely.\footcite{Marrink01}
301     \end{itemize}
302     \end{itemize}
303     \end{slide}
304 mmeineke 54
305    
306 mmeineke 64 % Slide 4
307 mmeineke 49
308 mmeineke 64 \begin{slide}{\LARGE Length Scale Simplification I}
309 mmeineke 49
310    
311 mmeineke 64 Replace any charged interactions of the system with dipoles.
312 mmeineke 49
313 mmeineke 64 \begin{itemize}
314     \item Allows for computational scaling approximately by $N$ for
315     dipole-dipole interactions.
316     \begin{itemize}
317     \item Relatively short range, $\frac{1}{r^3}$, interactions allow
318     the application of computational simplification algorithms,
319     ie. neighbor lists.
320     \end{itemize}
321    
322     \item In contrast, the Ewald sum, needed for calculating charge - charge
323     interactions, scales approximately by $N \log N$.
324 mmeineke 49 \end{itemize}
325     \end{slide}
326    
327 mmeineke 64 \begin{slide}{\LARGE Length Scale Simplification II}
328 mmeineke 49
329 mmeineke 64 Use unified models for the water and the lipid chain.
330 mmeineke 49
331     \begin{itemize}
332 mmeineke 64 \item
333     Drastically reduces the number of atoms to simulate.
334 mmeineke 49
335 mmeineke 64 \end{itemize}
336 mmeineke 49
337 mmeineke 65 \begin{center}
338 mmeineke 49
339 mmeineke 65 \begin{figure}
340     \epsfxsize=30mm
341     \epsfbox[angle=-90]{reduction.epsi}
342     \end{figure}
343     \end{center}
344 mmeineke 64
345 mmeineke 49 \end{slide}
346    
347    
348     % Slide 5
349    
350     \begin{slide}{Time Scale Simplification}
351     \begin{itemize}
352    
353     \item
354     No explicit hydrogens
355    
356 mmeineke 63 \begin{itemize}
357     \item Hydrogen bond vibration is normally one of the fastest time
358     events in a simulation.
359     \end{itemize}
360 mmeineke 49
361     \item
362     Constrain all bonds to be of fixed length.
363    
364 mmeineke 63 \begin{itemize}
365     \item As with the hydrogens, bond vibrations are the fastest motion in
366     a simulation
367     \end{itemize}
368 mmeineke 49
369     \item
370     Allows time steps of up to 3 fs with the current integrator.
371    
372     \end{itemize}
373     \end{slide}
374    
375    
376     % Slide 6
377     \begin{slide}{Molecular Dynamics}
378    
379 mmeineke 53 All of our simulations will be carried out using molecular
380     dynamics. This involves solving Newton's equations of motion using
381 mmeineke 49 the classical \emph{Hamiltonian} as follows:
382    
383     \begin{equation}
384     H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
385     \end{equation}
386    
387     Here $T(\vec{p})$ is the kinetic energy of the system which is a
388 mmeineke 53 function of momentum. In Cartesian space, $T(\vec{p})$ can be
389 mmeineke 49 written as:
390    
391     \begin{equation}
392     T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
393     \end{equation}
394    
395     \end{slide}
396    
397    
398     % Slide 7
399     \begin{slide}{The Potential}
400    
401     The main part of the simulation is then the calculation of forces from
402     the potential energy.
403    
404     \begin{equation}
405     \vec{F}(\vec{q}) = - \nabla V(\vec{q})
406     \end{equation}
407    
408     The potential itself is made of several parts.
409    
410     \begin{equation}
411 mmeineke 63 V_{tot} =
412 mmeineke 49 \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
413     \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
414     \end{equation}
415    
416     Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
417     the bond, bend, and torsion potentials, and the non-bonded
418 mmeineke 51 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
419     lenard-jones, dipole-dipole, and sticky potential interactions.
420 mmeineke 49
421     \end{slide}
422    
423    
424 mmeineke 51 % Slide 8
425 mmeineke 49
426 mmeineke 51 \begin{slide}{Soft Sticky Dipole Model}
427 mmeineke 49
428 mmeineke 52 The Soft-Sticky model for water is a reduced model.
429 mmeineke 49
430 mmeineke 52 \begin{itemize}
431 mmeineke 49
432 mmeineke 63 \item
433 mmeineke 52 The model is represented by a single point mass at the water's center
434     of mass.
435 mmeineke 49
436 mmeineke 63 \item
437 mmeineke 52 The point mass contains a fixed dipole of 2.35 D pointing from the
438 mmeineke 53 oxygens toward the hydrogens.
439 mmeineke 51
440 mmeineke 52 \end{itemize}
441 mmeineke 51
442 mmeineke 52 It's potential is as follows:
443    
444     \begin{equation}
445     V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
446 mmeineke 63 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
447 mmeineke 52 \end{equation}
448     \end{slide}
449    
450 mmeineke 54 % Slide 8b
451 mmeineke 52
452 mmeineke 54 \begin{slide}{SSD Diagram}
453    
454     \begin{center}
455     \begin{figure}
456     \epsfxsize=50mm
457     \epsfbox{ssd.epsi}
458     \end{figure}
459     \end{center}
460    
461     A Diagram of the SSD model.
462     \end{slide}
463    
464 mmeineke 52 % Slide 9
465     \begin{slide}{Hydrogen Bonding in SSD}
466    
467     It is important to note that SSD has a potential specifically to
468 mmeineke 53 recreate the hydrogen bonding network of water.
469 mmeineke 52
470 mmeineke 54
471 mmeineke 52 ICE SSD
472    
473     ICE point Dipole
474    
475 mmeineke 54
476 mmeineke 53 The importance of the hydrogen bond network is it's significant
477 mmeineke 52 contribution to the hydrophobic driving force of bilayer formation.
478     \end{slide}
479    
480    
481     % Slide 10
482    
483     \begin{slide}{The Lipid Model}
484    
485 mmeineke 53 To eliminate the need for charge-charge interactions, our lipid model
486     replaces the phospholipid head group with a single large head group
487     atom containing a freely oriented dipole. The tail is a simple alkane chain.
488    
489     Lipid Properties:
490     \begin{itemize}
491     \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$
492     \item $m_{\text{HEAD}} = 196\ \text{amu}$
493     \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms
494 mmeineke 63 \begin{itemize}
495     \item Alkane forcefield parameters taken from TraPPE
496     \end{itemize}
497 mmeineke 53 \end{itemize}
498    
499     \end{slide}
500    
501    
502     % Slide 11
503    
504     \begin{slide}{Lipid Model}
505    
506 mmeineke 52
507 mmeineke 63
508 mmeineke 52 \end{slide}
509    
510    
511 mmeineke 53 % Slide 12
512 mmeineke 52
513     \begin{slide}{Initial Runs: 25 Lipids in water}
514    
515 mmeineke 53 \textbf{Simulation Parameters:}
516 mmeineke 52
517 mmeineke 53 \begin{itemize}
518    
519     \item Starting Configuration:
520 mmeineke 63 \begin{itemize}
521     \item 25 lipid molecules arranged in a 5 x 5 square
522     \item square was surrounded by a sea of 1386 waters
523     \begin{itemize}
524     \item final water to lipid ratio was 55.4:1
525     \end{itemize}
526     \end{itemize}
527 mmeineke 53
528     \item Lipid had only a single saturated chain of 16 carbons
529    
530     \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$
531    
532     \item dt = 2.0 - 3.0 fs
533    
534     \item T = 300 K
535    
536     \item NVE ensemble
537    
538     \item Periodic boundary conditions
539     \end{itemize}
540    
541 mmeineke 52 \end{slide}
542    
543    
544 mmeineke 53 % Slide 13
545 mmeineke 52
546 mmeineke 54 \begin{slide}{5x5: Initial}
547 mmeineke 52
548 mmeineke 54 \begin{center}
549     \begin{figure}
550     \epsfxsize=50mm
551     \epsfbox{5x5-initial.eps}
552     \end{figure}
553     \end{center}
554 mmeineke 52
555 mmeineke 54 The initial configuration
556 mmeineke 52
557     \end{slide}
558    
559 mmeineke 54 \begin{slide}{5x5: Final}
560 mmeineke 52
561 mmeineke 54 \begin{center}
562     \begin{figure}
563     \epsfxsize=60mm
564     \epsfbox{5x5-1.7ns.eps}
565     \end{figure}
566     \end{center}
567    
568     The final configuration at 1.7 ns.
569    
570     \end{slide}
571    
572    
573 mmeineke 53 % Slide 14
574 mmeineke 52
575     \begin{slide}{5x5: $g(r)$}
576    
577 mmeineke 54 \begin{center}
578     \begin{figure}
579     \epsfxsize=60mm
580     \epsfbox{all5x5-HEAD-HEAD-gr.eps}
581     \end{figure}
582     \end{center}
583 mmeineke 52
584    
585 mmeineke 54 \end{slide}
586 mmeineke 52
587 mmeineke 54 \begin{slide}{5x5: $g(r)$}
588    
589     \begin{center}
590     \begin{figure}
591     \epsfxsize=60mm
592     \epsfbox{all5x5-HEAD-X-gr.eps}
593     \end{figure}
594     \end{center}
595    
596    
597 mmeineke 52 \end{slide}
598    
599    
600 mmeineke 53 % Slide 15
601 mmeineke 52
602     \begin{slide}{5x5: $\cos$ correlations}
603    
604 mmeineke 54 \begin{center}
605     \begin{figure}
606     \epsfxsize=60mm
607     \epsfbox{all5x5-HEAD-HEAD-cr.eps}
608     \end{figure}
609     \end{center}
610 mmeineke 52
611     \end{slide}
612    
613 mmeineke 54 \begin{slide}{5x5: $\cos$ correlations}
614 mmeineke 52
615 mmeineke 54 \begin{center}
616     \begin{figure}
617     \epsfxsize=60mm
618     \epsfbox{all5x5-HEAD-X-cr.eps}
619     \end{figure}
620     \end{center}
621    
622     \end{slide}
623    
624    
625 mmeineke 53 % Slide 16
626 mmeineke 52
627 mmeineke 53 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
628 mmeineke 52
629 mmeineke 53 \textbf{Simulation Parameters:}
630 mmeineke 52
631 mmeineke 53 \begin{itemize}
632    
633     \item Starting Configuration:
634 mmeineke 63 \begin{itemize}
635     \item 50 lipid molecules arranged randomly in a rectangular box
636     \item The box was then filled with 1384 waters
637     \begin{itemize}
638     \item final water to lipid ratio was 27:1
639     \end{itemize}
640     \end{itemize}
641 mmeineke 53
642     \item Lipid had only a single saturated chain of 16 carbons
643    
644     \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
645    
646     \item dt = 2.0 - 3.0 fs
647    
648     \item T = 300 K
649    
650     \item NVE ensemble
651    
652 mmeineke 63 \item Periodic boundary conditions
653 mmeineke 53
654     \end{itemize}
655    
656 mmeineke 52 \end{slide}
657    
658    
659 mmeineke 53 % Slide 17
660 mmeineke 52
661 mmeineke 54 \begin{slide}{R-50: Initial}
662 mmeineke 52
663 mmeineke 54 \begin{center}
664     \begin{figure}
665     \epsfxsize=100mm
666     \epsfbox{r50-initial.eps}
667     \end{figure}
668     \end{center}
669 mmeineke 52
670 mmeineke 54 The initial configuration
671 mmeineke 52
672     \end{slide}
673    
674 mmeineke 54 \begin{slide}{R-50: Final}
675 mmeineke 52
676 mmeineke 54 \begin{center}
677     \begin{figure}
678     \epsfxsize=100mm
679     \epsfbox{r50-521ps.eps}
680     \end{figure}
681     \end{center}
682    
683     The fianl configuration at 521 ps
684    
685     \end{slide}
686    
687    
688 mmeineke 53 % Slide 18
689 mmeineke 52
690     \begin{slide}{R-50: $g(r)$}
691    
692    
693 mmeineke 54 \begin{center}
694     \begin{figure}
695     \epsfxsize=60mm
696     \epsfbox{r50-HEAD-HEAD-gr.eps}
697     \end{figure}
698     \end{center}
699 mmeineke 52
700 mmeineke 54 \end{slide}
701 mmeineke 52
702 mmeineke 54
703     \begin{slide}{R-50: $g(r)$}
704    
705    
706     \begin{center}
707     \begin{figure}
708     \epsfxsize=60mm
709     \epsfbox{r50-HEAD-X-gr.eps}
710     \end{figure}
711     \end{center}
712    
713 mmeineke 52 \end{slide}
714    
715    
716 mmeineke 53 % Slide 19
717 mmeineke 52
718     \begin{slide}{R-50: $\cos$ correlations}
719    
720    
721 mmeineke 54 \begin{center}
722     \begin{figure}
723     \epsfxsize=60mm
724     \epsfbox{r50-HEAD-HEAD-cr.eps}
725     \end{figure}
726     \end{center}
727    
728 mmeineke 52 \end{slide}
729    
730 mmeineke 54 \begin{slide}{R-50: $\cos$ correlations}
731 mmeineke 52
732 mmeineke 54
733     \begin{center}
734     \begin{figure}
735     \epsfxsize=60mm
736     \epsfbox{r50-HEAD-X-cr.eps}
737     \end{figure}
738     \end{center}
739    
740     \end{slide}
741    
742    
743 mmeineke 53 % Slide 20
744 mmeineke 52
745     \begin{slide}{Future Directions}
746    
747 mmeineke 53 \begin{itemize}
748 mmeineke 52
749 mmeineke 63 \item
750 mmeineke 53 Simulation of a lipid with 2 chains, or perhaps expand the current
751     unified chain atoms to take up greater steric bulk.
752    
753 mmeineke 63 \item
754 mmeineke 53 Incorporate constant pressure and constant temperature into the ensemble.
755    
756     \item
757     Parrellize the code.
758    
759     \end{itemize}
760 mmeineke 52 \end{slide}
761    
762    
763 mmeineke 53 % Slide 21
764 mmeineke 52
765     \begin{slide}{Acknowledgements}
766    
767 mmeineke 53 \begin{itemize}
768 mmeineke 52
769 mmeineke 53 \item Dr. J. Daniel Gezelter
770     \item Christopher Fennel
771     \item Charles Vardeman
772     \item Teng Lin
773 mmeineke 64 \item Megan Sprauge
774     \item Patrick Conforti
775     \item Dan Combest
776 mmeineke 52
777 mmeineke 53 \end{itemize}
778    
779     Funding by:
780     \begin{itemize}
781     \item Dreyfus New Faculty Award
782     \end{itemize}
783    
784 mmeineke 52 \end{slide}
785    
786    
787    
788    
789    
790    
791    
792    
793 mmeineke 49 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
794    
795     \end{document}