1 |
% temporary preamble |
2 |
|
3 |
%\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper} |
4 |
|
5 |
\documentclass[portrait]{seminar} |
6 |
\usepackage[usenames,dvips]{pstcol} |
7 |
\usepackage{semcolor} |
8 |
\usepackage[dvips]{color} |
9 |
\usepackage{graphicx} |
10 |
\usepackage{subfigure} |
11 |
\usepackage{amsmath} |
12 |
\usepackage{amssymb} |
13 |
\usepackage{wrapfig} |
14 |
\usepackage{epsf} |
15 |
|
16 |
\usepackage[citefull=first, chicago, pages=always]{jurabib} |
17 |
|
18 |
|
19 |
\jurabibsetup{bibformat={tabular,ibidem,numbered}} |
20 |
\centerslidesfalse |
21 |
|
22 |
% ----------------------------- |
23 |
% | preamble + macros and crap | |
24 |
% ----------------------------- |
25 |
|
26 |
|
27 |
% Basic Color Defs used within this file |
28 |
\definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue |
29 |
\definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue |
30 |
\definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red |
31 |
\definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue |
32 |
|
33 |
%\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color |
34 |
|
35 |
% Change itemize environment to use funky color bullets |
36 |
\renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}} |
37 |
\renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}} |
38 |
\renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}} |
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
% Input corrections to 'seminar' |
45 |
|
46 |
\input{seminar.bug} |
47 |
\input{seminar.bg2} |
48 |
|
49 |
% Slides parameters: general setup |
50 |
|
51 |
\centerslidesfalse % Text not centered |
52 |
\slideframe{none} % No frame borders |
53 |
\raggedslides[2em] % Semi-ragged-right text |
54 |
\slidestyle{empty} % No labels |
55 |
\rotateheaderstrue % Header and slide orientation synchronized |
56 |
|
57 |
% Slides dimensions and header placement |
58 |
|
59 |
\addtolength{\slidewidth}{10mm} |
60 |
\addtolength{\slideheight}{10mm} |
61 |
\renewcommand{\slideleftmargin}{10mm} |
62 |
\renewcommand{\sliderightmargin}{10mm} |
63 |
\renewcommand{\slidetopmargin}{10mm} |
64 |
\renewcommand{\slidebottommargin}{15mm} |
65 |
|
66 |
% Landscape printing sequence (for dvips) |
67 |
|
68 |
\renewcommand{\printlandscape}{\special{landscape}} |
69 |
|
70 |
|
71 |
% My-itemize environment (3 levels): essentially not indented from |
72 |
% the left margin. New second- and third-level item markers. |
73 |
|
74 |
\newenvironment{myt} |
75 |
{\begin{list}{$\bullet$}% |
76 |
{\setlength{\labelwidth}{9pt}% |
77 |
\setlength{\labelsep}{4pt}% |
78 |
\setlength{\leftmargin}{13pt}% |
79 |
\setlength{\topsep}{\parskip}% |
80 |
\setlength{\partopsep}{\parskip}% |
81 |
\setlength{\itemsep}{0pt}}}% |
82 |
{\end{list}} |
83 |
|
84 |
|
85 |
\newenvironment{myt1} |
86 |
{\begin{list}{$\star$}% |
87 |
{\setlength{\labelwidth}{9pt}% |
88 |
\setlength{\labelsep}{4pt}% |
89 |
\setlength{\leftmargin}{13pt}% |
90 |
\setlength{\topsep}{0pt}% |
91 |
\setlength{\partopsep}{\parskip}% |
92 |
\setlength{\itemsep}{0pt}}}% |
93 |
{\end{list}} |
94 |
|
95 |
\newenvironment{myt2} |
96 |
{\begin{list}{$\rightsquigarrow$}% |
97 |
{\setlength{\labelwidth}{9pt}% |
98 |
\setlength{\labelsep}{4pt}% |
99 |
\setlength{\leftmargin}{13pt}% |
100 |
\setlength{\topsep}{0pt}% |
101 |
\setlength{\partopsep}{\parskip}% |
102 |
\setlength{\itemsep}{0pt}}}% |
103 |
{\end{list}} |
104 |
|
105 |
|
106 |
% Colors |
107 |
|
108 |
\definecolor{Red}{rgb}{1,0,0} % Text |
109 |
\definecolor{Green}{rgb}{0,1,0} |
110 |
\definecolor{Blue}{rgb}{0,0,1} |
111 |
\definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders |
112 |
\definecolor{Blue2}{rgb}{0,0,0.93} |
113 |
\definecolor{Gold}{rgb}{1,0.84,0} |
114 |
%\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background |
115 |
\definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page |
116 |
\definecolor{Green3}{rgb}{0,0.8,0} |
117 |
\definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31} |
118 |
\definecolor{Purple2}{rgb}{0.57,0.17,0.93} |
119 |
|
120 |
% Page and slides parameters |
121 |
|
122 |
\newpagestyle{slidot} |
123 |
{\color{Gold}\rule{10mm}{1.5pt}% |
124 |
\lower.22ex\hbox{% |
125 |
\textcolor{Blue2}{~~University of Notre Dame~~}}% |
126 |
\leavevmode\leaders\hrule height1.5pt\hfil} |
127 |
{\color{Gold}\rule{5mm}{1.5pt}% |
128 |
\lower.22ex\hbox{% |
129 |
\textcolor{SaddleBrown}{~~Matthew Meineke~~}}% |
130 |
\leavevmode\leaders\hrule height1.5pt\hfil% |
131 |
\lower.32ex\hbox{% |
132 |
\textcolor{Blue2}{~~\thepage~~}}% |
133 |
\rule{5mm}{1.5pt}} |
134 |
|
135 |
\pagestyle{slidot} |
136 |
|
137 |
|
138 |
|
139 |
|
140 |
% A couple of new counters for slide sequences |
141 |
|
142 |
\newcounter{sliq} |
143 |
\newcounter{slisup} |
144 |
\renewcommand{\thesliq}{\Roman{sliq}} |
145 |
\renewcommand{\theslisup}{\Roman{slisup}} |
146 |
|
147 |
% Set the background color of every slide |
148 |
|
149 |
\special{!userdict begin /bop-hook {gsave |
150 |
1.0 1.0 1.0 setrgbcolor clippath fill |
151 |
grestore} def end |
152 |
} |
153 |
|
154 |
% And here we are... |
155 |
|
156 |
\setcounter{slide}{-1} |
157 |
%\includeonly{slide10} |
158 |
|
159 |
|
160 |
% setup the jurabib style |
161 |
|
162 |
\renewcommand{\jbbtasep}{; } % bta = between two authors sep |
163 |
\renewcommand{\jbbfsasep}{; } % bfsa = between first and second author sep |
164 |
\renewcommand{\jbbstasep}{; } % bsta = between second and third author sep |
165 |
%\renewcommand{\bibansep}{. } % seperator after name |
166 |
|
167 |
\renewcommand{\bibtfont}{\textit} % change book title to italics |
168 |
\renewcommand{\bibjtfont}{\textit} % change journal title to italics |
169 |
\renewcommand{\bibapifont}[1]{} % gets rid of the article title in citation |
170 |
|
171 |
|
172 |
\renewcommand{\theslidefootnote}{\arabic{footnote}} |
173 |
|
174 |
|
175 |
|
176 |
% ---------------------- |
177 |
% | Title | |
178 |
% ---------------------- |
179 |
|
180 |
\title{A Mezzoscale Model for Phospholipid MD Simulations} |
181 |
|
182 |
\author{Matthew A. Meineke\\ |
183 |
Department of Chemistry and Biochemistry\\ |
184 |
University of Notre Dame\\ |
185 |
Notre Dame, Indiana 46556} |
186 |
|
187 |
\date{\today} |
188 |
|
189 |
%------------------------------------------------------------------- |
190 |
% Begin Document |
191 |
|
192 |
\begin{document} |
193 |
|
194 |
%\maketitle |
195 |
|
196 |
|
197 |
|
198 |
|
199 |
|
200 |
\nobibliography{canidacy_slides} |
201 |
\bibliographystyle{jurabib} |
202 |
|
203 |
|
204 |
% Slide 0 Title slide |
205 |
\begin{slide} |
206 |
\begin{center} |
207 |
\bfseries |
208 |
\fontsize{24pt}{30pt}\selectfont \color{Black} |
209 |
A Mesoscale Model for Phospholipid Simulations \par |
210 |
\fontsize{16pt}{20pt}\selectfont \color{Green3} |
211 |
Matthew A. Meineke\par |
212 |
\fontsize{12pt}{15pt}\selectfont \color{Purple2} |
213 |
Department of Chemistry and Biochemistry \par |
214 |
University of Notre Dame \par |
215 |
Notre Dame, IN 46556 \par |
216 |
\fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par |
217 |
\end{center} |
218 |
\end{slide} |
219 |
|
220 |
|
221 |
% Slide 1 |
222 |
\begin{slide} {\LARGE Talk Outline} |
223 |
\begin{itemize} |
224 |
|
225 |
\item Discussion of the research motivation and goals |
226 |
|
227 |
\item Methodology |
228 |
|
229 |
\item Discussion of current research and preliminary results |
230 |
|
231 |
\item Future research |
232 |
|
233 |
\end{itemize} |
234 |
\end{slide} |
235 |
|
236 |
|
237 |
% Slide 2 |
238 |
|
239 |
\begin{slide} |
240 |
|
241 |
\centerline{\LARGE Motivation A: Long Length Scales} |
242 |
|
243 |
\begin{wrapfigure}{r}{60mm} |
244 |
|
245 |
\epsfxsize=45mm |
246 |
\epsfbox{ripple.epsi} |
247 |
|
248 |
\end{wrapfigure} |
249 |
|
250 |
\mbox{} |
251 |
Ripple phase: |
252 |
\begin{itemize} |
253 |
|
254 |
\item |
255 |
The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel |
256 |
to fluid phase. |
257 |
|
258 |
\item |
259 |
Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Cevc87} |
260 |
|
261 |
\item |
262 |
Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ |
263 |
on a side.\footcite{Venable93}\footcite{Heller93} |
264 |
|
265 |
\end{itemize} |
266 |
\vspace{10mm} |
267 |
\end{slide} |
268 |
|
269 |
|
270 |
\begin{slide}{\LARGE Motivation B: Long Time Scales} |
271 |
|
272 |
\begin{itemize} |
273 |
|
274 |
\item |
275 |
Drug Diffusion |
276 |
\begin{itemize} |
277 |
\item |
278 |
Some drug molecules may spend appreciable amounts of time in the |
279 |
membrane |
280 |
|
281 |
\item |
282 |
Long time scale dynamics are need to observe and characterize their |
283 |
actions |
284 |
\end{itemize} |
285 |
|
286 |
\item |
287 |
Bilayer Formation Dynamics |
288 |
\begin{itemize} |
289 |
\item |
290 |
Current lipid simulations indicate\footcite{Marrink01}: |
291 |
\begin{itemize} |
292 |
\item Aggregation can happen as quickly as 200 ps |
293 |
|
294 |
\item Bilayers can take up to 20 ns to form completely |
295 |
\end{itemize} |
296 |
|
297 |
\end{itemize} |
298 |
\end{itemize} |
299 |
\end{slide} |
300 |
|
301 |
|
302 |
% Slide 4 |
303 |
|
304 |
\begin{slide}{\LARGE Length Scale Simplification I} |
305 |
|
306 |
|
307 |
Replace charge distriibutions of the system with dipoles. |
308 |
|
309 |
\begin{itemize} |
310 |
\item Allows for computational scaling approximately by $N$ for |
311 |
dipole-dipole interactions. |
312 |
\begin{itemize} |
313 |
\item Relatively short range, $\frac{1}{r^3}$, interactions allow |
314 |
the application of computational simplification algorithms, |
315 |
ie. neighbor lists. |
316 |
\end{itemize} |
317 |
|
318 |
\item In contrast, the Ewald sum, needed for calculating charge - charge |
319 |
interactions, scales approximately by $N \log N$. |
320 |
\end{itemize} |
321 |
|
322 |
\begin{equation} |
323 |
V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
324 |
\boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[ |
325 |
\frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} |
326 |
- |
327 |
\frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) % |
328 |
(\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) } |
329 |
{r^{5}_{ij}} \biggr] |
330 |
\end{equation} |
331 |
|
332 |
\begin{center} |
333 |
\vspace{4mm} |
334 |
vs. |
335 |
\end{center} |
336 |
|
337 |
\begin{equation} |
338 |
V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}% |
339 |
{4\pi\epsilon_{0} r_{ij}} |
340 |
\end{equation} |
341 |
|
342 |
\end{slide} |
343 |
|
344 |
\begin{slide}{\LARGE Length Scale Simplification II} |
345 |
|
346 |
Use unified models for the water and the lipid chain. |
347 |
|
348 |
\begin{itemize} |
349 |
\item |
350 |
Drastically reduces the number of atoms and interactions to simulate. |
351 |
|
352 |
\end{itemize} |
353 |
|
354 |
|
355 |
|
356 |
\begin{figure} |
357 |
%\epsfxsize=30mm |
358 |
%\leavevmode |
359 |
\begin{center} |
360 |
\includegraphics[width=50mm,angle=-90]{reduction.epsi} |
361 |
\end{center} |
362 |
\end{figure} |
363 |
|
364 |
|
365 |
\end{slide} |
366 |
|
367 |
|
368 |
% Slide 5 |
369 |
|
370 |
\begin{slide}{Time Scale Simplification} |
371 |
\begin{itemize} |
372 |
\item |
373 |
Constrain all bonds to be of fixed length. |
374 |
|
375 |
\begin{itemize} |
376 |
\item bond vibrations are the fastest motion in |
377 |
a simulation |
378 |
\end{itemize} |
379 |
|
380 |
\item |
381 |
Allows time steps of up to 3 fs with the current integrator. In |
382 |
contrast, a time step of 1 fs is usually required for energy conservation. |
383 |
|
384 |
\end{itemize} |
385 |
\end{slide} |
386 |
|
387 |
% Slide 8 |
388 |
|
389 |
\begin{slide}{Soft Sticky Dipole Model\footcite{Liu96}} |
390 |
|
391 |
\begin{figure} |
392 |
\begin{center} |
393 |
\includegraphics[width=40mm]{ssd.epsi} |
394 |
\end{center} |
395 |
\end{figure} |
396 |
|
397 |
|
398 |
It's potential is as follows: |
399 |
|
400 |
\begin{equation} |
401 |
V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
402 |
+ V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
403 |
\end{equation} |
404 |
\end{slide} |
405 |
|
406 |
|
407 |
% Slide 9 |
408 |
\begin{slide}{Hydrogen Bonding in SSD} |
409 |
|
410 |
The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$ recreates |
411 |
the hydrogen bonding network of water. |
412 |
|
413 |
|
414 |
\begin{figure} |
415 |
\begin{center} |
416 |
\mbox{% |
417 |
\subfigure[SSD relaxed on a diamond lattice]{% |
418 |
\mbox{\includegraphics[angle=-90,width=55mm]{ssd_ice.epsi}}}% |
419 |
\hspace{4mm} |
420 |
\subfigure[Stockmayer spheres relaxed on a diamond lattice]{% |
421 |
\mbox{\includegraphics[angle=-90,width=55mm]{dipole_ice.epsi}}}% |
422 |
} |
423 |
|
424 |
\end{center} |
425 |
\end{figure} |
426 |
|
427 |
\end{slide} |
428 |
|
429 |
|
430 |
% Slide 10 |
431 |
|
432 |
\begin{slide}{The Lipid Model} |
433 |
|
434 |
\begin{figure} |
435 |
\begin{center} |
436 |
|
437 |
\includegraphics[width=40mm,angle=-90]{lipidModel.epsi} |
438 |
|
439 |
\end{center} |
440 |
\end{figure} |
441 |
|
442 |
\begin{equation} |
443 |
V_{\mbox{lipid}} = \overbrace{% |
444 |
V_{\mbox{bend}}(\theta_{ijk}) + V_{\mbox{tors.}}(\phi_{ijkl})% |
445 |
}^{bonded} |
446 |
+ \overbrace{% |
447 |
V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})% |
448 |
}^{non-bonded} |
449 |
\end{equation} |
450 |
|
451 |
\begin{itemize} |
452 |
\item |
453 |
Tail forcefield parameters taken from TraPPE\footcite{Siepmann1998} |
454 |
\end{itemize} |
455 |
|
456 |
\end{slide} |
457 |
|
458 |
|
459 |
|
460 |
% Slide 12 |
461 |
|
462 |
\begin{slide}{Initial Runs: 25 Lipids in water} |
463 |
|
464 |
\begin{wrapfigure}{r}{60mm} |
465 |
|
466 |
\includegraphics[width=55mm]{5x5-initial.eps} |
467 |
|
468 |
\end{wrapfigure} |
469 |
|
470 |
\textbf{Simulation Parameters:} |
471 |
|
472 |
\begin{itemize} |
473 |
|
474 |
\item $N_{\mbox{lipids}} = 25$ |
475 |
|
476 |
\item $N_{\mbox{H}_{2}\mbox{O}} = 1386$ |
477 |
|
478 |
\item Water to lipid ratio of 55.4:1 or 70% wt. |
479 |
|
480 |
\item Lipid had only a single saturated chain of 16 carbons |
481 |
|
482 |
\item Box Size: 34.5~$\mbox{\AA}$~x~39.4~$\mbox{\AA}$~x~39.4~$\mbox{\AA}$ |
483 |
|
484 |
\item T = 300 K |
485 |
|
486 |
\item NVE ensemble |
487 |
|
488 |
\item Periodic boundary conditions |
489 |
\end{itemize} |
490 |
|
491 |
\end{slide} |
492 |
|
493 |
\begin{slide}{5x5: Final} |
494 |
|
495 |
|
496 |
\begin{figure} |
497 |
\begin{center} |
498 |
\includegraphics[angle=-90,width=75mm]{5x5-3.6ns.epsi} |
499 |
\end{center} |
500 |
\end{figure} |
501 |
|
502 |
\begin{center} |
503 |
The configuration at 3.6 ns. |
504 |
\end{center} |
505 |
|
506 |
\end{slide} |
507 |
|
508 |
|
509 |
% Slide 14 |
510 |
|
511 |
\begin{slide}{5x5: Head to Head $g(r)$} |
512 |
|
513 |
\begin{figure} |
514 |
\begin{center} |
515 |
\includegraphics[width=55mm,angle=-90]{all5x5-HEAD-HEAD.GofR.eps} |
516 |
\end{center} |
517 |
\end{figure} |
518 |
|
519 |
\begin{equation} |
520 |
g(r) = \frac{V}{N(N-1)}\langle \sum_{i} \sum_{j \neq i} \delta(|\mathbf{r} |
521 |
- \mathbf{r}_{ij}|) \rangle |
522 |
\end{equation} |
523 |
|
524 |
|
525 |
\end{slide} |
526 |
|
527 |
\begin{slide}{5x5: Head to Water $g(r)$} |
528 |
|
529 |
|
530 |
\begin{figure} |
531 |
\begin{center} |
532 |
\includegraphics[width=70mm,angle=-90]{all5x5-HEAD-X.GofR.eps} |
533 |
\end{center} |
534 |
\end{figure} |
535 |
|
536 |
\end{slide} |
537 |
|
538 |
|
539 |
% Slide 15 |
540 |
|
541 |
\begin{slide}{5x5: Head to Head $\cos$ correlation} |
542 |
|
543 |
\begin{figure} |
544 |
\begin{center} |
545 |
\includegraphics[width=70mm,angle=-90]{all5x5-HEAD-HEAD.cosCorr.eps} |
546 |
\end{center} |
547 |
\end{figure} |
548 |
|
549 |
\end{slide} |
550 |
|
551 |
\begin{slide}{5x5: Head to Water $\cos$ correlation} |
552 |
|
553 |
\begin{figure} |
554 |
\begin{center} |
555 |
\includegraphics[width=70mm,angle=-90]{all5x5-HEAD-X.cosCorr.eps} |
556 |
\end{center} |
557 |
\end{figure} |
558 |
|
559 |
\end{slide} |
560 |
|
561 |
|
562 |
% Slide 16 |
563 |
|
564 |
\begin{slide}{Initial Runs: 50 Lipids randomly arranged in water} |
565 |
|
566 |
\begin{wrapfigure}{r}{40mm} |
567 |
|
568 |
\includegraphics[angle=-90,width=35mm]{r50-initial.eps} |
569 |
|
570 |
\end{wrapfigure} |
571 |
|
572 |
\textbf{Simulation Parameters:} |
573 |
|
574 |
\begin{itemize} |
575 |
|
576 |
\item $N_{\mbox{lipids}} = 50$ |
577 |
|
578 |
\item $N_{\mbox{H}_{2}\mbox{O}} = 1384$ |
579 |
|
580 |
\item Water to lipid ratio of 27:1 or 54\% wt. |
581 |
|
582 |
\item Lipid had only a single saturated chain of 16 carbons |
583 |
|
584 |
\item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$ |
585 |
|
586 |
\item T = 300 K |
587 |
|
588 |
\item NVE ensemble |
589 |
|
590 |
\item Periodic boundary conditions |
591 |
|
592 |
\end{itemize} |
593 |
|
594 |
\end{slide} |
595 |
|
596 |
\begin{slide}{R-50: Final} |
597 |
|
598 |
|
599 |
\begin{figure} |
600 |
\begin{center} |
601 |
\includegraphics[angle=-90,width=110mm]{r50_1.3ns.epsi} |
602 |
\end{center} |
603 |
\end{figure} |
604 |
|
605 |
\begin{center} |
606 |
The configuration at 1.3 ns |
607 |
\end{center} |
608 |
|
609 |
\end{slide} |
610 |
|
611 |
|
612 |
% Slide 18 |
613 |
|
614 |
\begin{slide}{R-50: Head to Head $g(r)$} |
615 |
|
616 |
|
617 |
\begin{figure} |
618 |
\begin{center} |
619 |
\includegraphics[width=70mm,angle=-90]{r50-HEAD-HEAD.GofR.eps} |
620 |
\end{center} |
621 |
\end{figure} |
622 |
|
623 |
\end{slide} |
624 |
|
625 |
|
626 |
\begin{slide}{R-50: Head to Water $g(r)$} |
627 |
|
628 |
|
629 |
\begin{figure} |
630 |
\begin{center} |
631 |
\includegraphics[width=70mm,angle=-90]{r50-HEAD-X.GofR.eps} |
632 |
\end{center} |
633 |
\end{figure} |
634 |
|
635 |
\end{slide} |
636 |
|
637 |
|
638 |
% Slide 19 |
639 |
|
640 |
\begin{slide}{R-50: Head to Head $\cos$ correlation} |
641 |
|
642 |
|
643 |
\begin{figure} |
644 |
\begin{center} |
645 |
\includegraphics[width=70mm,angle=-90]{r50-HEAD-HEAD.cosCorr.eps} |
646 |
\end{center} |
647 |
\end{figure} |
648 |
|
649 |
\end{slide} |
650 |
|
651 |
\begin{slide}{R-50: Head to Water $\cos$ correlation} |
652 |
|
653 |
\begin{figure} |
654 |
\begin{center} |
655 |
\includegraphics[width=70mm,angle=-90]{r50-HEAD-X.cosCorr.eps} |
656 |
\end{center} |
657 |
\end{figure} |
658 |
|
659 |
\end{slide} |
660 |
|
661 |
|
662 |
% Slide 20 |
663 |
|
664 |
\begin{slide}{Future Directions} |
665 |
|
666 |
\begin{itemize} |
667 |
|
668 |
\item |
669 |
Simulation of a lipid with 2 chains, or perhaps expand the current |
670 |
unified chain atoms to take up greater steric bulk. |
671 |
|
672 |
\item |
673 |
Incorporate constant pressure and constant temperature into the ensemble. |
674 |
\begin{itemize} |
675 |
\item Start initial configuration in the gas phase, and |
676 |
compress the system to STP. |
677 |
\end{itemize} |
678 |
|
679 |
\item |
680 |
Parallelize the code. |
681 |
|
682 |
\item |
683 |
Explore and map the phase diagram for our model. |
684 |
|
685 |
\item |
686 |
Observe how modification of our model might affect the phase diagram. |
687 |
|
688 |
\item |
689 |
Add biologicaly interesting molecules to the system and observe |
690 |
transport properties. |
691 |
|
692 |
\end{itemize} |
693 |
\end{slide} |
694 |
|
695 |
|
696 |
% Slide 21 |
697 |
|
698 |
\begin{slide}{Acknowledgements} |
699 |
|
700 |
\begin{itemize} |
701 |
|
702 |
\item Dr. J. Daniel Gezelter |
703 |
\item Christopher Fennell |
704 |
\item Charles Vardeman |
705 |
\item Teng Lin |
706 |
\item Megan Sprauge |
707 |
\item Patrick Conforti |
708 |
\item Dan Combest |
709 |
|
710 |
\end{itemize} |
711 |
|
712 |
Funding by: |
713 |
\begin{itemize} |
714 |
\item NSF |
715 |
\end{itemize} |
716 |
|
717 |
\end{slide} |
718 |
|
719 |
|
720 |
%%%%%%%%%%%%%%%%%%%%%%%%%% Auxillary Slides %%%%%%%%%%%%%%%%%%%%%%%% |
721 |
|
722 |
\begin{slide}{Sticky Potential I} |
723 |
|
724 |
\begin{equation} |
725 |
V_{s\!p}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) = |
726 |
v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
727 |
\boldsymbol{\Omega}_{j}) |
728 |
+ |
729 |
s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
730 |
\boldsymbol{\Omega}_{j})] |
731 |
\end{equation} |
732 |
where |
733 |
\begin{equation} |
734 |
w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) = |
735 |
\sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij} |
736 |
+ \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji} |
737 |
\end{equation} |
738 |
and $w^{x}_{ij}$ is a correction function for when $\theta_{ij}$ is |
739 |
$0^{\circ}$ or $180^{\circ}$. Its form is: |
740 |
\begin{equation} |
741 |
\begin{split} |
742 |
w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) &= |
743 |
(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\ |
744 |
&\phantom{=} + (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ} |
745 |
\end{split} |
746 |
\end{equation} |
747 |
|
748 |
|
749 |
\end{slide} |
750 |
|
751 |
|
752 |
|
753 |
|
754 |
|
755 |
%%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
756 |
|
757 |
\end{document} |