ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 109
Committed: Fri Sep 13 16:22:46 2002 UTC (22 years, 7 months ago) by mmeineke
Content type: application/x-tex
File size: 15784 byte(s)
Log Message:
added a bunch of igures

File Contents

# Content
1 % temporary preamble
2
3 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4
5 \documentclass[portrait]{seminar}
6 \usepackage[usenames,dvips]{pstcol}
7 \usepackage{semcolor}
8 \usepackage[dvips]{color}
9 \usepackage{graphicx}
10 \usepackage{subfigure}
11 \usepackage{amsmath}
12 \usepackage{amssymb}
13 \usepackage{wrapfig}
14 \usepackage{epsf}
15
16 \usepackage[citefull=first, chicago, pages=always]{jurabib}
17
18
19 \jurabibsetup{bibformat={tabular,ibidem,numbered}}
20 \centerslidesfalse
21
22 % -----------------------------
23 % | preamble + macros and crap |
24 % -----------------------------
25
26
27 % Basic Color Defs used within this file
28 \definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue
29 \definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue
30 \definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red
31 \definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue
32
33 %\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color
34
35 % Change itemize environment to use funky color bullets
36 \renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}}
37 \renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}}
38 \renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}}
39
40
41
42
43
44 % Input corrections to 'seminar'
45
46 \input{seminar.bug}
47 \input{seminar.bg2}
48
49 % Slides parameters: general setup
50
51 \centerslidesfalse % Text not centered
52 \slideframe{none} % No frame borders
53 \raggedslides[2em] % Semi-ragged-right text
54 \slidestyle{empty} % No labels
55 \rotateheaderstrue % Header and slide orientation synchronized
56
57 % Slides dimensions and header placement
58
59 \addtolength{\slidewidth}{10mm}
60 \addtolength{\slideheight}{10mm}
61 \renewcommand{\slideleftmargin}{10mm}
62 \renewcommand{\sliderightmargin}{10mm}
63 \renewcommand{\slidetopmargin}{10mm}
64 \renewcommand{\slidebottommargin}{15mm}
65
66 % Landscape printing sequence (for dvips)
67
68 \renewcommand{\printlandscape}{\special{landscape}}
69
70
71 % My-itemize environment (3 levels): essentially not indented from
72 % the left margin. New second- and third-level item markers.
73
74 \newenvironment{myt}
75 {\begin{list}{$\bullet$}%
76 {\setlength{\labelwidth}{9pt}%
77 \setlength{\labelsep}{4pt}%
78 \setlength{\leftmargin}{13pt}%
79 \setlength{\topsep}{\parskip}%
80 \setlength{\partopsep}{\parskip}%
81 \setlength{\itemsep}{0pt}}}%
82 {\end{list}}
83
84
85 \newenvironment{myt1}
86 {\begin{list}{$\star$}%
87 {\setlength{\labelwidth}{9pt}%
88 \setlength{\labelsep}{4pt}%
89 \setlength{\leftmargin}{13pt}%
90 \setlength{\topsep}{0pt}%
91 \setlength{\partopsep}{\parskip}%
92 \setlength{\itemsep}{0pt}}}%
93 {\end{list}}
94
95 \newenvironment{myt2}
96 {\begin{list}{$\rightsquigarrow$}%
97 {\setlength{\labelwidth}{9pt}%
98 \setlength{\labelsep}{4pt}%
99 \setlength{\leftmargin}{13pt}%
100 \setlength{\topsep}{0pt}%
101 \setlength{\partopsep}{\parskip}%
102 \setlength{\itemsep}{0pt}}}%
103 {\end{list}}
104
105
106 % Colors
107
108 \definecolor{Red}{rgb}{1,0,0} % Text
109 \definecolor{Green}{rgb}{0,1,0}
110 \definecolor{Blue}{rgb}{0,0,1}
111 \definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders
112 \definecolor{Blue2}{rgb}{0,0,0.93}
113 \definecolor{Gold}{rgb}{1,0.84,0}
114 %\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background
115 \definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page
116 \definecolor{Green3}{rgb}{0,0.8,0}
117 \definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31}
118 \definecolor{Purple2}{rgb}{0.57,0.17,0.93}
119
120 % Page and slides parameters
121
122 \newpagestyle{slidot}
123 {\color{Gold}\rule{10mm}{1.5pt}%
124 \lower.22ex\hbox{%
125 \textcolor{Blue2}{~~University of Notre Dame~~}}%
126 \leavevmode\leaders\hrule height1.5pt\hfil}
127 {\color{Gold}\rule{5mm}{1.5pt}%
128 \lower.22ex\hbox{%
129 \textcolor{SaddleBrown}{~~Matthew Meineke~~}}%
130 \leavevmode\leaders\hrule height1.5pt\hfil%
131 \lower.32ex\hbox{%
132 \textcolor{Blue2}{~~\thepage~~}}%
133 \rule{5mm}{1.5pt}}
134
135 \pagestyle{slidot}
136
137
138
139
140 % A couple of new counters for slide sequences
141
142 \newcounter{sliq}
143 \newcounter{slisup}
144 \renewcommand{\thesliq}{\Roman{sliq}}
145 \renewcommand{\theslisup}{\Roman{slisup}}
146
147 % Set the background color of every slide
148
149 \special{!userdict begin /bop-hook {gsave
150 1.0 1.0 1.0 setrgbcolor clippath fill
151 grestore} def end
152 }
153
154 % And here we are...
155
156 \setcounter{slide}{-1}
157 %\includeonly{slide10}
158
159
160 % setup the jurabib style
161
162 \renewcommand{\jbbtasep}{; } % bta = between two authors sep
163 \renewcommand{\jbbfsasep}{; } % bfsa = between first and second author sep
164 \renewcommand{\jbbstasep}{; } % bsta = between second and third author sep
165 %\renewcommand{\bibansep}{. } % seperator after name
166
167 \renewcommand{\bibtfont}{\textit} % change book title to italics
168 \renewcommand{\bibjtfont}{\textit} % change journal title to italics
169 \renewcommand{\bibapifont}[1]{} % gets rid of the article title in citation
170
171
172 \renewcommand{\theslidefootnote}{\arabic{footnote}}
173
174
175
176 % ----------------------
177 % | Title |
178 % ----------------------
179
180 \title{A Mezzoscale Model for Phospholipid MD Simulations}
181
182 \author{Matthew A. Meineke\\
183 Department of Chemistry and Biochemistry\\
184 University of Notre Dame\\
185 Notre Dame, Indiana 46556}
186
187 \date{\today}
188
189 %-------------------------------------------------------------------
190 % Begin Document
191
192 \begin{document}
193
194 %\maketitle
195
196
197
198
199
200 \nobibliography{canidacy_slides}
201 \bibliographystyle{jurabib}
202
203
204 % Slide 0 Title slide
205 \begin{slide}
206 \begin{center}
207 \bfseries
208 \fontsize{24pt}{30pt}\selectfont \color{Black}
209 A Mesoscale Model for Phospholipid Simulations \par
210 \fontsize{16pt}{20pt}\selectfont \color{Green3}
211 Matthew A. Meineke\par
212 \fontsize{12pt}{15pt}\selectfont \color{Purple2}
213 Department of Chemistry and Biochemistry \par
214 University of Notre Dame \par
215 Notre Dame, IN 46556 \par
216 \fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par
217 \end{center}
218 \end{slide}
219
220
221 % Slide 1
222 \begin{slide} {\LARGE Talk Outline}
223 \begin{itemize}
224
225 \item Discussion of the research motivation and goals
226
227 \item Methodology
228
229 \item Discussion of current research and preliminary results
230
231 \item Future research
232
233 \end{itemize}
234 \end{slide}
235
236
237 % Slide 2
238
239 \begin{slide}
240
241 \centerline{\LARGE Motivation A: Long Length Scales}
242
243 \begin{wrapfigure}{r}{60mm}
244
245 \epsfxsize=45mm
246 \epsfbox{ripple.epsi}
247
248 \end{wrapfigure}
249
250 \mbox{}
251 Ripple phase:
252 \begin{itemize}
253
254 \item
255 The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
256 to fluid phase.
257
258 \item
259 Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Cevc87}
260
261 \item
262 Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$
263 on a side.\footcite{Venable93}\footcite{Heller93}
264
265 \end{itemize}
266 \vspace{10mm}
267 \end{slide}
268
269
270 \begin{slide}{\LARGE Motivation B: Long Time Scales}
271
272 \begin{itemize}
273
274 \item
275 Drug Diffusion
276 \begin{itemize}
277 \item
278 Some drug molecules may spend appreciable amounts of time in the
279 membrane
280
281 \item
282 Long time scale dynamics are need to observe and characterize their
283 actions
284 \end{itemize}
285
286 \item
287 Bilayer Formation Dynamics
288 \begin{itemize}
289 \item
290 Current lipid simulations indicate\footcite{Marrink01}:
291 \begin{itemize}
292 \item Aggregation can happen as quickly as 200 ps
293
294 \item Bilayers can take up to 20 ns to form completely
295 \end{itemize}
296
297 \end{itemize}
298 \end{itemize}
299 \end{slide}
300
301
302 % Slide 4
303
304 \begin{slide}{\LARGE Length Scale Simplification I}
305
306
307 Replace charge distriibutions of the system with dipoles.
308
309 \begin{itemize}
310 \item Allows for computational scaling approximately by $N$ for
311 dipole-dipole interactions.
312 \begin{itemize}
313 \item Relatively short range, $\frac{1}{r^3}$, interactions allow
314 the application of computational simplification algorithms,
315 ie. neighbor lists.
316 \end{itemize}
317
318 \item In contrast, the Ewald sum, needed for calculating charge - charge
319 interactions, scales approximately by $N \log N$.
320 \end{itemize}
321
322 \begin{equation}
323 V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
324 \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
325 \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
326 -
327 \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
328 (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
329 {r^{5}_{ij}} \biggr]
330 \end{equation}
331
332 \begin{center}
333 \vspace{4mm}
334 vs.
335 \end{center}
336
337 \begin{equation}
338 V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
339 {4\pi\epsilon_{0} r_{ij}}
340 \end{equation}
341
342 \end{slide}
343
344 \begin{slide}{\LARGE Length Scale Simplification II}
345
346 Use unified models for the water and the lipid chain.
347
348 \begin{itemize}
349 \item
350 Drastically reduces the number of atoms and interactions to simulate.
351
352 \end{itemize}
353
354
355
356 \begin{figure}
357 %\epsfxsize=30mm
358 %\leavevmode
359 \begin{center}
360 \includegraphics[width=50mm,angle=-90]{reduction.epsi}
361 \end{center}
362 \end{figure}
363
364
365 \end{slide}
366
367
368 % Slide 5
369
370 \begin{slide}{Time Scale Simplification}
371 \begin{itemize}
372 \item
373 Constrain all bonds to be of fixed length.
374
375 \begin{itemize}
376 \item bond vibrations are the fastest motion in
377 a simulation
378 \end{itemize}
379
380 \item
381 Allows time steps of up to 3 fs with the current integrator. In
382 contrast, a time step of 1 fs is usually required for energy conservation.
383
384 \end{itemize}
385 \end{slide}
386
387 % Slide 8
388
389 \begin{slide}{Soft Sticky Dipole Model\footcite{Liu96}}
390
391 \begin{figure}
392 \begin{center}
393 \includegraphics[width=40mm]{ssd.epsi}
394 \end{center}
395 \end{figure}
396
397
398 It's potential is as follows:
399
400 \begin{equation}
401 V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
402 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
403 \end{equation}
404 \end{slide}
405
406
407 % Slide 9
408 \begin{slide}{Hydrogen Bonding in SSD}
409
410 The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$ recreates
411 the hydrogen bonding network of water.
412
413
414 \begin{figure}
415 \begin{center}
416 \mbox{%
417 \subfigure[SSD relaxed on a diamond lattice]{%
418 \mbox{\includegraphics[angle=-90,width=55mm]{ssd_ice.epsi}}}%
419 \hspace{4mm}
420 \subfigure[Stockmayer spheres relaxed on a diamond lattice]{%
421 \mbox{\includegraphics[angle=-90,width=55mm]{dipole_ice.epsi}}}%
422 }
423
424 \end{center}
425 \end{figure}
426
427 \end{slide}
428
429
430 % Slide 10
431
432 \begin{slide}{The Lipid Model}
433
434 \begin{figure}
435 \begin{center}
436
437 \includegraphics[width=40mm,angle=-90]{lipidModel.epsi}
438
439 \end{center}
440 \end{figure}
441
442 \begin{equation}
443 V_{\mbox{lipid}} = \overbrace{%
444 V_{\mbox{bend}}(\theta_{ijk}) + V_{\mbox{tors.}}(\phi_{ijkl})%
445 }^{bonded}
446 + \overbrace{%
447 V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})%
448 }^{non-bonded}
449 \end{equation}
450
451 \begin{itemize}
452 \item
453 Tail forcefield parameters taken from TraPPE\footcite{Siepmann1998}
454 \end{itemize}
455
456 \end{slide}
457
458
459
460 % Slide 12
461
462 \begin{slide}{Initial Runs: 25 Lipids in water}
463
464 \begin{wrapfigure}{r}{60mm}
465
466 \includegraphics[width=55mm]{5x5-initial.eps}
467
468 \end{wrapfigure}
469
470 \textbf{Simulation Parameters:}
471
472 \begin{itemize}
473
474 \item $N_{\mbox{lipids}} = 25$
475
476 \item $N_{\mbox{H}_{2}\mbox{O}} = 1386$
477
478 \item Water to lipid ratio of 55.4:1 or 70% wt.
479
480 \item Lipid had only a single saturated chain of 16 carbons
481
482 \item Box Size: 34.5~$\mbox{\AA}$~x~39.4~$\mbox{\AA}$~x~39.4~$\mbox{\AA}$
483
484 \item T = 300 K
485
486 \item NVE ensemble
487
488 \item Periodic boundary conditions
489 \end{itemize}
490
491 \end{slide}
492
493 \begin{slide}{5x5: Final}
494
495
496 \begin{figure}
497 \begin{center}
498 \includegraphics[angle=-90,width=75mm]{5x5-3.6ns.epsi}
499 \end{center}
500 \end{figure}
501
502 \begin{center}
503 The configuration at 3.6 ns.
504 \end{center}
505
506 \end{slide}
507
508
509 % Slide 14
510
511 \begin{slide}{5x5: Head to Head $g(r)$}
512
513 \begin{figure}
514 \begin{center}
515 \includegraphics[width=55mm,angle=-90]{all5x5-HEAD-HEAD.GofR.eps}
516 \end{center}
517 \end{figure}
518
519 \begin{equation}
520 g(r) = \frac{V}{N(N-1)}\langle \sum_{i} \sum_{j \neq i} \delta(|\mathbf{r}
521 - \mathbf{r}_{ij}|) \rangle
522 \end{equation}
523
524
525 \end{slide}
526
527 \begin{slide}{5x5: Head to Water $g(r)$}
528
529
530 \begin{figure}
531 \begin{center}
532 \includegraphics[width=70mm,angle=-90]{all5x5-HEAD-X.GofR.eps}
533 \end{center}
534 \end{figure}
535
536 \end{slide}
537
538
539 % Slide 15
540
541 \begin{slide}{5x5: Head to Head $\cos$ correlation}
542
543 \begin{figure}
544 \begin{center}
545 \includegraphics[width=70mm,angle=-90]{all5x5-HEAD-HEAD.cosCorr.eps}
546 \end{center}
547 \end{figure}
548
549 \end{slide}
550
551 \begin{slide}{5x5: Head to Water $\cos$ correlation}
552
553 \begin{figure}
554 \begin{center}
555 \includegraphics[width=70mm,angle=-90]{all5x5-HEAD-X.cosCorr.eps}
556 \end{center}
557 \end{figure}
558
559 \end{slide}
560
561
562 % Slide 16
563
564 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
565
566 \begin{wrapfigure}{r}{40mm}
567
568 \includegraphics[angle=-90,width=35mm]{r50-initial.eps}
569
570 \end{wrapfigure}
571
572 \textbf{Simulation Parameters:}
573
574 \begin{itemize}
575
576 \item $N_{\mbox{lipids}} = 50$
577
578 \item $N_{\mbox{H}_{2}\mbox{O}} = 1384$
579
580 \item Water to lipid ratio of 27:1 or 54\% wt.
581
582 \item Lipid had only a single saturated chain of 16 carbons
583
584 \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
585
586 \item T = 300 K
587
588 \item NVE ensemble
589
590 \item Periodic boundary conditions
591
592 \end{itemize}
593
594 \end{slide}
595
596 \begin{slide}{R-50: Final}
597
598
599 \begin{figure}
600 \begin{center}
601 \includegraphics[angle=-90,width=110mm]{r50_1.3ns.epsi}
602 \end{center}
603 \end{figure}
604
605 \begin{center}
606 The configuration at 1.3 ns
607 \end{center}
608
609 \end{slide}
610
611
612 % Slide 18
613
614 \begin{slide}{R-50: Head to Head $g(r)$}
615
616
617 \begin{figure}
618 \begin{center}
619 \includegraphics[width=70mm,angle=-90]{r50-HEAD-HEAD.GofR.eps}
620 \end{center}
621 \end{figure}
622
623 \end{slide}
624
625
626 \begin{slide}{R-50: Head to Water $g(r)$}
627
628
629 \begin{figure}
630 \begin{center}
631 \includegraphics[width=70mm,angle=-90]{r50-HEAD-X.GofR.eps}
632 \end{center}
633 \end{figure}
634
635 \end{slide}
636
637
638 % Slide 19
639
640 \begin{slide}{R-50: Head to Head $\cos$ correlation}
641
642
643 \begin{figure}
644 \begin{center}
645 \includegraphics[width=70mm,angle=-90]{r50-HEAD-HEAD.cosCorr.eps}
646 \end{center}
647 \end{figure}
648
649 \end{slide}
650
651 \begin{slide}{R-50: Head to Water $\cos$ correlation}
652
653 \begin{figure}
654 \begin{center}
655 \includegraphics[width=70mm,angle=-90]{r50-HEAD-X.cosCorr.eps}
656 \end{center}
657 \end{figure}
658
659 \end{slide}
660
661
662 % Slide 20
663
664 \begin{slide}{Future Directions}
665
666 \begin{itemize}
667
668 \item
669 Simulation of a lipid with 2 chains, or perhaps expand the current
670 unified chain atoms to take up greater steric bulk.
671
672 \item
673 Incorporate constant pressure and constant temperature into the ensemble.
674 \begin{itemize}
675 \item Start initial configuration in the gas phase, and
676 compress the system to STP.
677 \end{itemize}
678
679 \item
680 Parallelize the code.
681
682 \item
683 Explore and map the phase diagram for our model.
684
685 \item
686 Observe how modification of our model might affect the phase diagram.
687
688 \item
689 Add biologicaly interesting molecules to the system and observe
690 transport properties.
691
692 \end{itemize}
693 \end{slide}
694
695
696 % Slide 21
697
698 \begin{slide}{Acknowledgements}
699
700 \begin{itemize}
701
702 \item Dr. J. Daniel Gezelter
703 \item Christopher Fennell
704 \item Charles Vardeman
705 \item Teng Lin
706 \item Megan Sprauge
707 \item Patrick Conforti
708 \item Dan Combest
709
710 \end{itemize}
711
712 Funding by:
713 \begin{itemize}
714 \item NSF
715 \end{itemize}
716
717 \end{slide}
718
719
720 %%%%%%%%%%%%%%%%%%%%%%%%%% Auxillary Slides %%%%%%%%%%%%%%%%%%%%%%%%
721
722 \begin{slide}{Sticky Potential I}
723
724 \begin{equation}
725 V_{s\!p}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
726 v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
727 \boldsymbol{\Omega}_{j})
728 +
729 s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
730 \boldsymbol{\Omega}_{j})]
731 \end{equation}
732 where
733 \begin{equation}
734 w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
735 \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
736 + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
737 \end{equation}
738 and $w^{x}_{ij}$ is a correction function for when $\theta_{ij}$ is
739 $0^{\circ}$ or $180^{\circ}$. Its form is:
740 \begin{equation}
741 \begin{split}
742 w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) &=
743 (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
744 &\phantom{=} + (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
745 \end{split}
746 \end{equation}
747
748
749 \end{slide}
750
751
752
753
754
755 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
756
757 \end{document}