1 |
% temporary preamble |
2 |
|
3 |
%\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper} |
4 |
|
5 |
|
6 |
\documentclass{seminar} |
7 |
\usepackage{color} |
8 |
|
9 |
\usepackage{amsmath} |
10 |
\usepackage{amssymb} |
11 |
\usepackage{epsf} |
12 |
|
13 |
% ---------------------- |
14 |
% | Title | |
15 |
% ---------------------- |
16 |
|
17 |
\title{A Coarse Grain Model for Phospholipid MD Simulations} |
18 |
|
19 |
\author{Matthew A. Meineke\\ |
20 |
Department of Chemistry and Biochemistry\\ |
21 |
University of Notre Dame\\ |
22 |
Notre Dame, Indiana 46556} |
23 |
|
24 |
\date{\today} |
25 |
|
26 |
%------------------------------------------------------------------- |
27 |
% Begin Document |
28 |
|
29 |
\begin{document} |
30 |
\maketitle |
31 |
|
32 |
|
33 |
|
34 |
% Slide 1 |
35 |
\begin{slide} {Talk Outline} |
36 |
\begin{itemize} |
37 |
|
38 |
\item Discussion of the research motivation and goals |
39 |
|
40 |
\item Methodology |
41 |
|
42 |
\item Discussion of current research and preliminary results |
43 |
|
44 |
\item Future research |
45 |
|
46 |
\end{itemize} |
47 |
\end{slide} |
48 |
|
49 |
|
50 |
% Slide 2 |
51 |
|
52 |
\begin{slide}{Motivation} |
53 |
|
54 |
There is a strong need in phospholipid bilayer simulations for the |
55 |
capability to simulate both long time and length scales. Consider the |
56 |
following: |
57 |
|
58 |
\begin{itemize} |
59 |
|
60 |
\item Drug diffusion |
61 |
\begin{itemize} |
62 |
\item Some drug molecules may spend an appreciable time in the |
63 |
membrane. Long time scale dynamics are needed to observe and |
64 |
characterize their actions. |
65 |
\end{itemize} |
66 |
|
67 |
\item Ripple phase |
68 |
\begin{itemize} |
69 |
\item Between the bilayer gel and fluid phase there exists a ripple |
70 |
phase. This phase has a period of about 100 - 200 $\mbox{\AA}$. |
71 |
\end{itemize} |
72 |
|
73 |
\item Bilayer formation dynamics |
74 |
\begin{itemize} |
75 |
\item Initial simulations show that bilayers can take upwards of |
76 |
20 ns to form completely. |
77 |
\end{itemize} |
78 |
|
79 |
\end{itemize} |
80 |
\end{slide} |
81 |
|
82 |
|
83 |
% Slide 3 |
84 |
|
85 |
\begin{slide}{Research Goals} |
86 |
\begin{itemize} |
87 |
|
88 |
\item |
89 |
To develop a coarse-grain simulation model with which to simulate |
90 |
phospholipid bilayers. |
91 |
|
92 |
\item To use the model to observe: |
93 |
|
94 |
\begin{itemize} |
95 |
|
96 |
\item Phospholipid properties with long length scales |
97 |
|
98 |
\begin{itemize} |
99 |
\item The ripple phase. |
100 |
\end{itemize} |
101 |
|
102 |
\item Long time scale dynamics of biological relevance |
103 |
|
104 |
\begin{itemize} |
105 |
\item Trans-membrane diffusion of drug molecules |
106 |
\end{itemize} |
107 |
\end{itemize} |
108 |
\end{itemize} |
109 |
\end{slide} |
110 |
|
111 |
|
112 |
% Slide 4 |
113 |
|
114 |
\begin{slide}{Length Scale Simplification} |
115 |
\begin{itemize} |
116 |
|
117 |
\item |
118 |
Replace any charged interactions of the system with dipoles. |
119 |
|
120 |
\begin{itemize} |
121 |
\item Allows for computational scaling approximately by $N$ for |
122 |
dipole-dipole interactions. |
123 |
\item In contrast, the Ewald sum scales approximately by $N \log N$. |
124 |
\end{itemize} |
125 |
|
126 |
\item |
127 |
Use unified models for the water and the lipid chain. |
128 |
|
129 |
\begin{itemize} |
130 |
\item Drastically reduces the number of atoms to simulate. |
131 |
\item Number of water interactions alone reduced by $\frac{1}{3}$. |
132 |
\end{itemize} |
133 |
\end{itemize} |
134 |
\end{slide} |
135 |
|
136 |
|
137 |
% Slide 5 |
138 |
|
139 |
\begin{slide}{Time Scale Simplification} |
140 |
\begin{itemize} |
141 |
|
142 |
\item |
143 |
No explicit hydrogens |
144 |
|
145 |
\begin{itemize} |
146 |
\item Hydrogen bond vibration is normally one of the fastest time |
147 |
events in a simulation. |
148 |
\end{itemize} |
149 |
|
150 |
\item |
151 |
Constrain all bonds to be of fixed length. |
152 |
|
153 |
\begin{itemize} |
154 |
\item As with the hydrogens, bond vibrations are the fastest motion in |
155 |
a simulation |
156 |
\end{itemize} |
157 |
|
158 |
\item |
159 |
Allows time steps of up to 3 fs with the current integrator. |
160 |
|
161 |
\end{itemize} |
162 |
\end{slide} |
163 |
|
164 |
|
165 |
% Slide 6 |
166 |
\begin{slide}{Molecular Dynamics} |
167 |
|
168 |
All of our simulations will be carried out using molecular |
169 |
dynamics. This involves solving Newton's equations of motion using |
170 |
the classical \emph{Hamiltonian} as follows: |
171 |
|
172 |
\begin{equation} |
173 |
H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q}) |
174 |
\end{equation} |
175 |
|
176 |
Here $T(\vec{p})$ is the kinetic energy of the system which is a |
177 |
function of momentum. In Cartesian space, $T(\vec{p})$ can be |
178 |
written as: |
179 |
|
180 |
\begin{equation} |
181 |
T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}} |
182 |
\end{equation} |
183 |
|
184 |
\end{slide} |
185 |
|
186 |
|
187 |
% Slide 7 |
188 |
\begin{slide}{The Potential} |
189 |
|
190 |
The main part of the simulation is then the calculation of forces from |
191 |
the potential energy. |
192 |
|
193 |
\begin{equation} |
194 |
\vec{F}(\vec{q}) = - \nabla V(\vec{q}) |
195 |
\end{equation} |
196 |
|
197 |
The potential itself is made of several parts. |
198 |
|
199 |
\begin{equation} |
200 |
V_{tot} = |
201 |
\overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} + |
202 |
\overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}} |
203 |
\end{equation} |
204 |
|
205 |
Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are |
206 |
the bond, bend, and torsion potentials, and the non-bonded |
207 |
interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the |
208 |
lenard-jones, dipole-dipole, and sticky potential interactions. |
209 |
|
210 |
\end{slide} |
211 |
|
212 |
|
213 |
% Slide 8 |
214 |
|
215 |
\begin{slide}{Soft Sticky Dipole Model} |
216 |
|
217 |
The Soft-Sticky model for water is a reduced model. |
218 |
|
219 |
\begin{itemize} |
220 |
|
221 |
\item |
222 |
The model is represented by a single point mass at the water's center |
223 |
of mass. |
224 |
|
225 |
\item |
226 |
The point mass contains a fixed dipole of 2.35 D pointing from the |
227 |
oxygens toward the hydrogens. |
228 |
|
229 |
\end{itemize} |
230 |
|
231 |
It's potential is as follows: |
232 |
|
233 |
\begin{equation} |
234 |
V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
235 |
+ V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
236 |
\end{equation} |
237 |
\end{slide} |
238 |
|
239 |
% Slide 8b |
240 |
|
241 |
\begin{slide}{SSD Diagram} |
242 |
|
243 |
\begin{center} |
244 |
\begin{figure} |
245 |
\epsfxsize=50mm |
246 |
\epsfbox{ssd.epsi} |
247 |
\end{figure} |
248 |
\end{center} |
249 |
|
250 |
A Diagram of the SSD model. |
251 |
\end{slide} |
252 |
|
253 |
% Slide 9 |
254 |
\begin{slide}{Hydrogen Bonding in SSD} |
255 |
|
256 |
It is important to note that SSD has a potential specifically to |
257 |
recreate the hydrogen bonding network of water. |
258 |
|
259 |
|
260 |
ICE SSD |
261 |
|
262 |
ICE point Dipole |
263 |
|
264 |
|
265 |
The importance of the hydrogen bond network is it's significant |
266 |
contribution to the hydrophobic driving force of bilayer formation. |
267 |
\end{slide} |
268 |
|
269 |
|
270 |
% Slide 10 |
271 |
|
272 |
\begin{slide}{The Lipid Model} |
273 |
|
274 |
To eliminate the need for charge-charge interactions, our lipid model |
275 |
replaces the phospholipid head group with a single large head group |
276 |
atom containing a freely oriented dipole. The tail is a simple alkane chain. |
277 |
|
278 |
Lipid Properties: |
279 |
\begin{itemize} |
280 |
\item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$ |
281 |
\item $m_{\text{HEAD}} = 196\ \text{amu}$ |
282 |
\item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms |
283 |
\begin{itemize} |
284 |
\item Alkane forcefield parameters taken from TraPPE |
285 |
\end{itemize} |
286 |
\end{itemize} |
287 |
|
288 |
\end{slide} |
289 |
|
290 |
|
291 |
% Slide 11 |
292 |
|
293 |
\begin{slide}{Lipid Model} |
294 |
|
295 |
|
296 |
|
297 |
\end{slide} |
298 |
|
299 |
|
300 |
% Slide 12 |
301 |
|
302 |
\begin{slide}{Initial Runs: 25 Lipids in water} |
303 |
|
304 |
\textbf{Simulation Parameters:} |
305 |
|
306 |
\begin{itemize} |
307 |
|
308 |
\item Starting Configuration: |
309 |
\begin{itemize} |
310 |
\item 25 lipid molecules arranged in a 5 x 5 square |
311 |
\item square was surrounded by a sea of 1386 waters |
312 |
\begin{itemize} |
313 |
\item final water to lipid ratio was 55.4:1 |
314 |
\end{itemize} |
315 |
\end{itemize} |
316 |
|
317 |
\item Lipid had only a single saturated chain of 16 carbons |
318 |
|
319 |
\item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ |
320 |
|
321 |
\item dt = 2.0 - 3.0 fs |
322 |
|
323 |
\item T = 300 K |
324 |
|
325 |
\item NVE ensemble |
326 |
|
327 |
\item Periodic boundary conditions |
328 |
\end{itemize} |
329 |
|
330 |
\end{slide} |
331 |
|
332 |
|
333 |
% Slide 13 |
334 |
|
335 |
\begin{slide}{5x5: Initial} |
336 |
|
337 |
\begin{center} |
338 |
\begin{figure} |
339 |
\epsfxsize=50mm |
340 |
\epsfbox{5x5-initial.eps} |
341 |
\end{figure} |
342 |
\end{center} |
343 |
|
344 |
The initial configuration |
345 |
|
346 |
\end{slide} |
347 |
|
348 |
\begin{slide}{5x5: Final} |
349 |
|
350 |
\begin{center} |
351 |
\begin{figure} |
352 |
\epsfxsize=60mm |
353 |
\epsfbox{5x5-1.7ns.eps} |
354 |
\end{figure} |
355 |
\end{center} |
356 |
|
357 |
The final configuration at 1.7 ns. |
358 |
|
359 |
\end{slide} |
360 |
|
361 |
|
362 |
% Slide 14 |
363 |
|
364 |
\begin{slide}{5x5: $g(r)$} |
365 |
|
366 |
\begin{center} |
367 |
\begin{figure} |
368 |
\epsfxsize=60mm |
369 |
\epsfbox{all5x5-HEAD-HEAD-gr.eps} |
370 |
\end{figure} |
371 |
\end{center} |
372 |
|
373 |
|
374 |
\end{slide} |
375 |
|
376 |
\begin{slide}{5x5: $g(r)$} |
377 |
|
378 |
\begin{center} |
379 |
\begin{figure} |
380 |
\epsfxsize=60mm |
381 |
\epsfbox{all5x5-HEAD-X-gr.eps} |
382 |
\end{figure} |
383 |
\end{center} |
384 |
|
385 |
|
386 |
\end{slide} |
387 |
|
388 |
|
389 |
% Slide 15 |
390 |
|
391 |
\begin{slide}{5x5: $\cos$ correlations} |
392 |
|
393 |
\begin{center} |
394 |
\begin{figure} |
395 |
\epsfxsize=60mm |
396 |
\epsfbox{all5x5-HEAD-HEAD-cr.eps} |
397 |
\end{figure} |
398 |
\end{center} |
399 |
|
400 |
\end{slide} |
401 |
|
402 |
\begin{slide}{5x5: $\cos$ correlations} |
403 |
|
404 |
\begin{center} |
405 |
\begin{figure} |
406 |
\epsfxsize=60mm |
407 |
\epsfbox{all5x5-HEAD-X-cr.eps} |
408 |
\end{figure} |
409 |
\end{center} |
410 |
|
411 |
\end{slide} |
412 |
|
413 |
|
414 |
% Slide 16 |
415 |
|
416 |
\begin{slide}{Initial Runs: 50 Lipids randomly arranged in water} |
417 |
|
418 |
\textbf{Simulation Parameters:} |
419 |
|
420 |
\begin{itemize} |
421 |
|
422 |
\item Starting Configuration: |
423 |
\begin{itemize} |
424 |
\item 50 lipid molecules arranged randomly in a rectangular box |
425 |
\item The box was then filled with 1384 waters |
426 |
\begin{itemize} |
427 |
\item final water to lipid ratio was 27:1 |
428 |
\end{itemize} |
429 |
\end{itemize} |
430 |
|
431 |
\item Lipid had only a single saturated chain of 16 carbons |
432 |
|
433 |
\item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$ |
434 |
|
435 |
\item dt = 2.0 - 3.0 fs |
436 |
|
437 |
\item T = 300 K |
438 |
|
439 |
\item NVE ensemble |
440 |
|
441 |
\item Periodic boundary conditions |
442 |
|
443 |
\end{itemize} |
444 |
|
445 |
\end{slide} |
446 |
|
447 |
|
448 |
% Slide 17 |
449 |
|
450 |
\begin{slide}{R-50: Initial} |
451 |
|
452 |
\begin{center} |
453 |
\begin{figure} |
454 |
\epsfxsize=100mm |
455 |
\epsfbox{r50-initial.eps} |
456 |
\end{figure} |
457 |
\end{center} |
458 |
|
459 |
The initial configuration |
460 |
|
461 |
\end{slide} |
462 |
|
463 |
\begin{slide}{R-50: Final} |
464 |
|
465 |
\begin{center} |
466 |
\begin{figure} |
467 |
\epsfxsize=100mm |
468 |
\epsfbox{r50-521ps.eps} |
469 |
\end{figure} |
470 |
\end{center} |
471 |
|
472 |
The fianl configuration at 521 ps |
473 |
|
474 |
\end{slide} |
475 |
|
476 |
|
477 |
% Slide 18 |
478 |
|
479 |
\begin{slide}{R-50: $g(r)$} |
480 |
|
481 |
|
482 |
\begin{center} |
483 |
\begin{figure} |
484 |
\epsfxsize=60mm |
485 |
\epsfbox{r50-HEAD-HEAD-gr.eps} |
486 |
\end{figure} |
487 |
\end{center} |
488 |
|
489 |
\end{slide} |
490 |
|
491 |
|
492 |
\begin{slide}{R-50: $g(r)$} |
493 |
|
494 |
|
495 |
\begin{center} |
496 |
\begin{figure} |
497 |
\epsfxsize=60mm |
498 |
\epsfbox{r50-HEAD-X-gr.eps} |
499 |
\end{figure} |
500 |
\end{center} |
501 |
|
502 |
\end{slide} |
503 |
|
504 |
|
505 |
% Slide 19 |
506 |
|
507 |
\begin{slide}{R-50: $\cos$ correlations} |
508 |
|
509 |
|
510 |
\begin{center} |
511 |
\begin{figure} |
512 |
\epsfxsize=60mm |
513 |
\epsfbox{r50-HEAD-HEAD-cr.eps} |
514 |
\end{figure} |
515 |
\end{center} |
516 |
|
517 |
\end{slide} |
518 |
|
519 |
\begin{slide}{R-50: $\cos$ correlations} |
520 |
|
521 |
|
522 |
\begin{center} |
523 |
\begin{figure} |
524 |
\epsfxsize=60mm |
525 |
\epsfbox{r50-HEAD-X-cr.eps} |
526 |
\end{figure} |
527 |
\end{center} |
528 |
|
529 |
\end{slide} |
530 |
|
531 |
|
532 |
% Slide 20 |
533 |
|
534 |
\begin{slide}{Future Directions} |
535 |
|
536 |
\begin{itemize} |
537 |
|
538 |
\item |
539 |
Simulation of a lipid with 2 chains, or perhaps expand the current |
540 |
unified chain atoms to take up greater steric bulk. |
541 |
|
542 |
\item |
543 |
Incorporate constant pressure and constant temperature into the ensemble. |
544 |
|
545 |
\item |
546 |
Parrellize the code. |
547 |
|
548 |
\end{itemize} |
549 |
\end{slide} |
550 |
|
551 |
|
552 |
% Slide 21 |
553 |
|
554 |
\begin{slide}{Acknowledgements} |
555 |
|
556 |
\begin{itemize} |
557 |
|
558 |
\item Dr. J. Daniel Gezelter |
559 |
\item Christopher Fennel |
560 |
\item Charles Vardeman |
561 |
\item Teng Lin |
562 |
|
563 |
\end{itemize} |
564 |
|
565 |
Funding by: |
566 |
\begin{itemize} |
567 |
\item Dreyfus New Faculty Award |
568 |
\end{itemize} |
569 |
|
570 |
\end{slide} |
571 |
|
572 |
|
573 |
|
574 |
|
575 |
|
576 |
|
577 |
|
578 |
|
579 |
%%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
580 |
|
581 |
\end{document} |