| 1 |
% temporary preamble |
| 2 |
|
| 3 |
%\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper} |
| 4 |
|
| 5 |
|
| 6 |
\documentclass{seminar} |
| 7 |
\usepackage{color} |
| 8 |
|
| 9 |
\usepackage{amsmath} |
| 10 |
\usepackage{amssymb} |
| 11 |
\usepackage{epsf} |
| 12 |
|
| 13 |
% ---------------------- |
| 14 |
% | Title | |
| 15 |
% ---------------------- |
| 16 |
|
| 17 |
\title{A Coarse Grain Model for Phospholipid MD Simulations} |
| 18 |
|
| 19 |
\author{Matthew A. Meineke\\ |
| 20 |
Department of Chemistry and Biochemistry\\ |
| 21 |
University of Notre Dame\\ |
| 22 |
Notre Dame, Indiana 46556} |
| 23 |
|
| 24 |
\date{\today} |
| 25 |
|
| 26 |
%------------------------------------------------------------------- |
| 27 |
% Begin Document |
| 28 |
|
| 29 |
\begin{document} |
| 30 |
\maketitle |
| 31 |
|
| 32 |
|
| 33 |
|
| 34 |
% Slide 1 |
| 35 |
\begin{slide} {Talk Outline} |
| 36 |
\begin{itemize} |
| 37 |
|
| 38 |
\item Discussion of the research motivation and goals |
| 39 |
|
| 40 |
\item Methodology |
| 41 |
|
| 42 |
\item Discussion of current research and preliminary results |
| 43 |
|
| 44 |
\item Future research |
| 45 |
|
| 46 |
\end{itemize} |
| 47 |
\end{slide} |
| 48 |
|
| 49 |
|
| 50 |
% Slide 2 |
| 51 |
|
| 52 |
\begin{slide}{Motivation} |
| 53 |
|
| 54 |
There is a strong need in phospholipid bilayer simulations for the |
| 55 |
capability to simulate both long time and length scales. Consider the |
| 56 |
following: |
| 57 |
|
| 58 |
\begin{itemize} |
| 59 |
|
| 60 |
\item Drug diffusion |
| 61 |
\begin{itemize} |
| 62 |
\item Some drug molecules may spend an appreciable time in the |
| 63 |
membrane. Long time scale dynamics are needed to observe and |
| 64 |
characterize their actions. |
| 65 |
\end{itemize} |
| 66 |
|
| 67 |
\item Ripple phase |
| 68 |
\begin{itemize} |
| 69 |
\item Between the bilayer gel and fluid phase there exists a ripple |
| 70 |
phase. This phase has a period of about 100 - 200 $\mbox{\AA}$. |
| 71 |
\end{itemize} |
| 72 |
|
| 73 |
\item Bilayer formation dynamics |
| 74 |
\begin{itemize} |
| 75 |
\item Initial simulations show that bilayers can take upwards of |
| 76 |
20 ns to form completely. |
| 77 |
\end{itemize} |
| 78 |
|
| 79 |
\end{itemize} |
| 80 |
\end{slide} |
| 81 |
|
| 82 |
|
| 83 |
% Slide 3 |
| 84 |
|
| 85 |
\begin{slide}{Research Goals} |
| 86 |
\begin{itemize} |
| 87 |
|
| 88 |
\item |
| 89 |
To develop a coarse-grain simulation model with which to simulate |
| 90 |
phospholipid bilayers. |
| 91 |
|
| 92 |
\item To use the model to observe: |
| 93 |
|
| 94 |
\begin{itemize} |
| 95 |
|
| 96 |
\item Phospholipid properties with long length scales |
| 97 |
|
| 98 |
\begin{itemize} |
| 99 |
\item The ripple phase. |
| 100 |
\end{itemize} |
| 101 |
|
| 102 |
\item Long time scale dynamics of biological relevance |
| 103 |
|
| 104 |
\begin{itemize} |
| 105 |
\item Trans-membrane diffusion of drug molecules |
| 106 |
\end{itemize} |
| 107 |
\end{itemize} |
| 108 |
\end{itemize} |
| 109 |
\end{slide} |
| 110 |
|
| 111 |
|
| 112 |
% Slide 4 |
| 113 |
|
| 114 |
\begin{slide}{Length Scale Simplification} |
| 115 |
\begin{itemize} |
| 116 |
|
| 117 |
\item |
| 118 |
Replace any charged interactions of the system with dipoles. |
| 119 |
|
| 120 |
\begin{itemize} |
| 121 |
\item Allows for computational scaling approximately by $N$ for |
| 122 |
dipole-dipole interactions. |
| 123 |
\item In contrast, the Ewald sum scales approximately by $N \log N$. |
| 124 |
\end{itemize} |
| 125 |
|
| 126 |
\item |
| 127 |
Use unified models for the water and the lipid chain. |
| 128 |
|
| 129 |
\begin{itemize} |
| 130 |
\item Drastically reduces the number of atoms to simulate. |
| 131 |
\item Number of water interactions alone reduced by $\frac{1}{3}$. |
| 132 |
\end{itemize} |
| 133 |
\end{itemize} |
| 134 |
\end{slide} |
| 135 |
|
| 136 |
|
| 137 |
% Slide 5 |
| 138 |
|
| 139 |
\begin{slide}{Time Scale Simplification} |
| 140 |
\begin{itemize} |
| 141 |
|
| 142 |
\item |
| 143 |
No explicit hydrogens |
| 144 |
|
| 145 |
\begin{itemize} |
| 146 |
\item Hydrogen bond vibration is normally one of the fastest time |
| 147 |
events in a simulation. |
| 148 |
\end{itemize} |
| 149 |
|
| 150 |
\item |
| 151 |
Constrain all bonds to be of fixed length. |
| 152 |
|
| 153 |
\begin{itemize} |
| 154 |
\item As with the hydrogens, bond vibrations are the fastest motion in |
| 155 |
a simulation |
| 156 |
\end{itemize} |
| 157 |
|
| 158 |
\item |
| 159 |
Allows time steps of up to 3 fs with the current integrator. |
| 160 |
|
| 161 |
\end{itemize} |
| 162 |
\end{slide} |
| 163 |
|
| 164 |
|
| 165 |
% Slide 6 |
| 166 |
\begin{slide}{Molecular Dynamics} |
| 167 |
|
| 168 |
All of our simulations will be carried out using molecular |
| 169 |
dynamics. This involves solving Newton's equations of motion using |
| 170 |
the classical \emph{Hamiltonian} as follows: |
| 171 |
|
| 172 |
\begin{equation} |
| 173 |
H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q}) |
| 174 |
\end{equation} |
| 175 |
|
| 176 |
Here $T(\vec{p})$ is the kinetic energy of the system which is a |
| 177 |
function of momentum. In Cartesian space, $T(\vec{p})$ can be |
| 178 |
written as: |
| 179 |
|
| 180 |
\begin{equation} |
| 181 |
T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}} |
| 182 |
\end{equation} |
| 183 |
|
| 184 |
\end{slide} |
| 185 |
|
| 186 |
|
| 187 |
% Slide 7 |
| 188 |
\begin{slide}{The Potential} |
| 189 |
|
| 190 |
The main part of the simulation is then the calculation of forces from |
| 191 |
the potential energy. |
| 192 |
|
| 193 |
\begin{equation} |
| 194 |
\vec{F}(\vec{q}) = - \nabla V(\vec{q}) |
| 195 |
\end{equation} |
| 196 |
|
| 197 |
The potential itself is made of several parts. |
| 198 |
|
| 199 |
\begin{equation} |
| 200 |
V_{tot} = |
| 201 |
\overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} + |
| 202 |
\overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}} |
| 203 |
\end{equation} |
| 204 |
|
| 205 |
Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are |
| 206 |
the bond, bend, and torsion potentials, and the non-bonded |
| 207 |
interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the |
| 208 |
lenard-jones, dipole-dipole, and sticky potential interactions. |
| 209 |
|
| 210 |
\end{slide} |
| 211 |
|
| 212 |
|
| 213 |
% Slide 8 |
| 214 |
|
| 215 |
\begin{slide}{Soft Sticky Dipole Model} |
| 216 |
|
| 217 |
The Soft-Sticky model for water is a reduced model. |
| 218 |
|
| 219 |
\begin{itemize} |
| 220 |
|
| 221 |
\item |
| 222 |
The model is represented by a single point mass at the water's center |
| 223 |
of mass. |
| 224 |
|
| 225 |
\item |
| 226 |
The point mass contains a fixed dipole of 2.35 D pointing from the |
| 227 |
oxygens toward the hydrogens. |
| 228 |
|
| 229 |
\end{itemize} |
| 230 |
|
| 231 |
It's potential is as follows: |
| 232 |
|
| 233 |
\begin{equation} |
| 234 |
V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 235 |
+ V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 236 |
\end{equation} |
| 237 |
\end{slide} |
| 238 |
|
| 239 |
% Slide 8b |
| 240 |
|
| 241 |
\begin{slide}{SSD Diagram} |
| 242 |
|
| 243 |
\begin{center} |
| 244 |
\begin{figure} |
| 245 |
\epsfxsize=50mm |
| 246 |
\epsfbox{ssd.epsi} |
| 247 |
\end{figure} |
| 248 |
\end{center} |
| 249 |
|
| 250 |
A Diagram of the SSD model. |
| 251 |
\end{slide} |
| 252 |
|
| 253 |
% Slide 9 |
| 254 |
\begin{slide}{Hydrogen Bonding in SSD} |
| 255 |
|
| 256 |
It is important to note that SSD has a potential specifically to |
| 257 |
recreate the hydrogen bonding network of water. |
| 258 |
|
| 259 |
|
| 260 |
ICE SSD |
| 261 |
|
| 262 |
ICE point Dipole |
| 263 |
|
| 264 |
|
| 265 |
The importance of the hydrogen bond network is it's significant |
| 266 |
contribution to the hydrophobic driving force of bilayer formation. |
| 267 |
\end{slide} |
| 268 |
|
| 269 |
|
| 270 |
% Slide 10 |
| 271 |
|
| 272 |
\begin{slide}{The Lipid Model} |
| 273 |
|
| 274 |
To eliminate the need for charge-charge interactions, our lipid model |
| 275 |
replaces the phospholipid head group with a single large head group |
| 276 |
atom containing a freely oriented dipole. The tail is a simple alkane chain. |
| 277 |
|
| 278 |
Lipid Properties: |
| 279 |
\begin{itemize} |
| 280 |
\item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$ |
| 281 |
\item $m_{\text{HEAD}} = 196\ \text{amu}$ |
| 282 |
\item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms |
| 283 |
\begin{itemize} |
| 284 |
\item Alkane forcefield parameters taken from TraPPE |
| 285 |
\end{itemize} |
| 286 |
\end{itemize} |
| 287 |
|
| 288 |
\end{slide} |
| 289 |
|
| 290 |
|
| 291 |
% Slide 11 |
| 292 |
|
| 293 |
\begin{slide}{Lipid Model} |
| 294 |
|
| 295 |
|
| 296 |
|
| 297 |
\end{slide} |
| 298 |
|
| 299 |
|
| 300 |
% Slide 12 |
| 301 |
|
| 302 |
\begin{slide}{Initial Runs: 25 Lipids in water} |
| 303 |
|
| 304 |
\textbf{Simulation Parameters:} |
| 305 |
|
| 306 |
\begin{itemize} |
| 307 |
|
| 308 |
\item Starting Configuration: |
| 309 |
\begin{itemize} |
| 310 |
\item 25 lipid molecules arranged in a 5 x 5 square |
| 311 |
\item square was surrounded by a sea of 1386 waters |
| 312 |
\begin{itemize} |
| 313 |
\item final water to lipid ratio was 55.4:1 |
| 314 |
\end{itemize} |
| 315 |
\end{itemize} |
| 316 |
|
| 317 |
\item Lipid had only a single saturated chain of 16 carbons |
| 318 |
|
| 319 |
\item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ |
| 320 |
|
| 321 |
\item dt = 2.0 - 3.0 fs |
| 322 |
|
| 323 |
\item T = 300 K |
| 324 |
|
| 325 |
\item NVE ensemble |
| 326 |
|
| 327 |
\item Periodic boundary conditions |
| 328 |
\end{itemize} |
| 329 |
|
| 330 |
\end{slide} |
| 331 |
|
| 332 |
|
| 333 |
% Slide 13 |
| 334 |
|
| 335 |
\begin{slide}{5x5: Initial} |
| 336 |
|
| 337 |
\begin{center} |
| 338 |
\begin{figure} |
| 339 |
\epsfxsize=50mm |
| 340 |
\epsfbox{5x5-initial.eps} |
| 341 |
\end{figure} |
| 342 |
\end{center} |
| 343 |
|
| 344 |
The initial configuration |
| 345 |
|
| 346 |
\end{slide} |
| 347 |
|
| 348 |
\begin{slide}{5x5: Final} |
| 349 |
|
| 350 |
\begin{center} |
| 351 |
\begin{figure} |
| 352 |
\epsfxsize=60mm |
| 353 |
\epsfbox{5x5-1.7ns.eps} |
| 354 |
\end{figure} |
| 355 |
\end{center} |
| 356 |
|
| 357 |
The final configuration at 1.7 ns. |
| 358 |
|
| 359 |
\end{slide} |
| 360 |
|
| 361 |
|
| 362 |
% Slide 14 |
| 363 |
|
| 364 |
\begin{slide}{5x5: $g(r)$} |
| 365 |
|
| 366 |
\begin{center} |
| 367 |
\begin{figure} |
| 368 |
\epsfxsize=60mm |
| 369 |
\epsfbox{all5x5-HEAD-HEAD-gr.eps} |
| 370 |
\end{figure} |
| 371 |
\end{center} |
| 372 |
|
| 373 |
|
| 374 |
\end{slide} |
| 375 |
|
| 376 |
\begin{slide}{5x5: $g(r)$} |
| 377 |
|
| 378 |
\begin{center} |
| 379 |
\begin{figure} |
| 380 |
\epsfxsize=60mm |
| 381 |
\epsfbox{all5x5-HEAD-X-gr.eps} |
| 382 |
\end{figure} |
| 383 |
\end{center} |
| 384 |
|
| 385 |
|
| 386 |
\end{slide} |
| 387 |
|
| 388 |
|
| 389 |
% Slide 15 |
| 390 |
|
| 391 |
\begin{slide}{5x5: $\cos$ correlations} |
| 392 |
|
| 393 |
\begin{center} |
| 394 |
\begin{figure} |
| 395 |
\epsfxsize=60mm |
| 396 |
\epsfbox{all5x5-HEAD-HEAD-cr.eps} |
| 397 |
\end{figure} |
| 398 |
\end{center} |
| 399 |
|
| 400 |
\end{slide} |
| 401 |
|
| 402 |
\begin{slide}{5x5: $\cos$ correlations} |
| 403 |
|
| 404 |
\begin{center} |
| 405 |
\begin{figure} |
| 406 |
\epsfxsize=60mm |
| 407 |
\epsfbox{all5x5-HEAD-X-cr.eps} |
| 408 |
\end{figure} |
| 409 |
\end{center} |
| 410 |
|
| 411 |
\end{slide} |
| 412 |
|
| 413 |
|
| 414 |
% Slide 16 |
| 415 |
|
| 416 |
\begin{slide}{Initial Runs: 50 Lipids randomly arranged in water} |
| 417 |
|
| 418 |
\textbf{Simulation Parameters:} |
| 419 |
|
| 420 |
\begin{itemize} |
| 421 |
|
| 422 |
\item Starting Configuration: |
| 423 |
\begin{itemize} |
| 424 |
\item 50 lipid molecules arranged randomly in a rectangular box |
| 425 |
\item The box was then filled with 1384 waters |
| 426 |
\begin{itemize} |
| 427 |
\item final water to lipid ratio was 27:1 |
| 428 |
\end{itemize} |
| 429 |
\end{itemize} |
| 430 |
|
| 431 |
\item Lipid had only a single saturated chain of 16 carbons |
| 432 |
|
| 433 |
\item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$ |
| 434 |
|
| 435 |
\item dt = 2.0 - 3.0 fs |
| 436 |
|
| 437 |
\item T = 300 K |
| 438 |
|
| 439 |
\item NVE ensemble |
| 440 |
|
| 441 |
\item Periodic boundary conditions |
| 442 |
|
| 443 |
\end{itemize} |
| 444 |
|
| 445 |
\end{slide} |
| 446 |
|
| 447 |
|
| 448 |
% Slide 17 |
| 449 |
|
| 450 |
\begin{slide}{R-50: Initial} |
| 451 |
|
| 452 |
\begin{center} |
| 453 |
\begin{figure} |
| 454 |
\epsfxsize=100mm |
| 455 |
\epsfbox{r50-initial.eps} |
| 456 |
\end{figure} |
| 457 |
\end{center} |
| 458 |
|
| 459 |
The initial configuration |
| 460 |
|
| 461 |
\end{slide} |
| 462 |
|
| 463 |
\begin{slide}{R-50: Final} |
| 464 |
|
| 465 |
\begin{center} |
| 466 |
\begin{figure} |
| 467 |
\epsfxsize=100mm |
| 468 |
\epsfbox{r50-521ps.eps} |
| 469 |
\end{figure} |
| 470 |
\end{center} |
| 471 |
|
| 472 |
The fianl configuration at 521 ps |
| 473 |
|
| 474 |
\end{slide} |
| 475 |
|
| 476 |
|
| 477 |
% Slide 18 |
| 478 |
|
| 479 |
\begin{slide}{R-50: $g(r)$} |
| 480 |
|
| 481 |
|
| 482 |
\begin{center} |
| 483 |
\begin{figure} |
| 484 |
\epsfxsize=60mm |
| 485 |
\epsfbox{r50-HEAD-HEAD-gr.eps} |
| 486 |
\end{figure} |
| 487 |
\end{center} |
| 488 |
|
| 489 |
\end{slide} |
| 490 |
|
| 491 |
|
| 492 |
\begin{slide}{R-50: $g(r)$} |
| 493 |
|
| 494 |
|
| 495 |
\begin{center} |
| 496 |
\begin{figure} |
| 497 |
\epsfxsize=60mm |
| 498 |
\epsfbox{r50-HEAD-X-gr.eps} |
| 499 |
\end{figure} |
| 500 |
\end{center} |
| 501 |
|
| 502 |
\end{slide} |
| 503 |
|
| 504 |
|
| 505 |
% Slide 19 |
| 506 |
|
| 507 |
\begin{slide}{R-50: $\cos$ correlations} |
| 508 |
|
| 509 |
|
| 510 |
\begin{center} |
| 511 |
\begin{figure} |
| 512 |
\epsfxsize=60mm |
| 513 |
\epsfbox{r50-HEAD-HEAD-cr.eps} |
| 514 |
\end{figure} |
| 515 |
\end{center} |
| 516 |
|
| 517 |
\end{slide} |
| 518 |
|
| 519 |
\begin{slide}{R-50: $\cos$ correlations} |
| 520 |
|
| 521 |
|
| 522 |
\begin{center} |
| 523 |
\begin{figure} |
| 524 |
\epsfxsize=60mm |
| 525 |
\epsfbox{r50-HEAD-X-cr.eps} |
| 526 |
\end{figure} |
| 527 |
\end{center} |
| 528 |
|
| 529 |
\end{slide} |
| 530 |
|
| 531 |
|
| 532 |
% Slide 20 |
| 533 |
|
| 534 |
\begin{slide}{Future Directions} |
| 535 |
|
| 536 |
\begin{itemize} |
| 537 |
|
| 538 |
\item |
| 539 |
Simulation of a lipid with 2 chains, or perhaps expand the current |
| 540 |
unified chain atoms to take up greater steric bulk. |
| 541 |
|
| 542 |
\item |
| 543 |
Incorporate constant pressure and constant temperature into the ensemble. |
| 544 |
|
| 545 |
\item |
| 546 |
Parrellize the code. |
| 547 |
|
| 548 |
\end{itemize} |
| 549 |
\end{slide} |
| 550 |
|
| 551 |
|
| 552 |
% Slide 21 |
| 553 |
|
| 554 |
\begin{slide}{Acknowledgements} |
| 555 |
|
| 556 |
\begin{itemize} |
| 557 |
|
| 558 |
\item Dr. J. Daniel Gezelter |
| 559 |
\item Christopher Fennel |
| 560 |
\item Charles Vardeman |
| 561 |
\item Teng Lin |
| 562 |
|
| 563 |
\end{itemize} |
| 564 |
|
| 565 |
Funding by: |
| 566 |
\begin{itemize} |
| 567 |
\item Dreyfus New Faculty Award |
| 568 |
\end{itemize} |
| 569 |
|
| 570 |
\end{slide} |
| 571 |
|
| 572 |
|
| 573 |
|
| 574 |
|
| 575 |
|
| 576 |
|
| 577 |
|
| 578 |
|
| 579 |
%%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 580 |
|
| 581 |
\end{document} |