ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/lipidPaper/methodology.tex
Revision: 229
Committed: Thu Jan 9 19:38:00 2003 UTC (21 years, 5 months ago) by mmeineke
Content type: application/x-tex
File size: 3745 byte(s)
Log Message:
just some initial fiddling

File Contents

# Content
1 \documentclass[11pt]{article}
2
3 \usepackage{endfloat}
4 \usepackage{graphicx}
5 \usepackage{color}
6 \usepackage{floatflt}
7 \usepackage{amsmath}
8 \usepackage{amssymb}
9 \usepackage{subfigure}
10 \usepackage{palatino}
11 \usepackage[ref]{overcite}
12
13
14
15 \pagestyle{plain}
16 \pagenumbering{arabic}
17 \oddsidemargin 0.0cm \evensidemargin 0.0cm
18 \topmargin -21pt \headsep 10pt
19 \textheight 9.0in \textwidth 6.5in
20 \brokenpenalty=10000
21 \renewcommand{\baselinestretch}{1.2}
22 \renewcommand\citemid{\ } % no comma in optional reference note
23
24
25 \begin{document}
26
27
28 \title{A Mesoscale Model for Phospholipid Simulations}
29
30 \author{Matthew A. Meineke, Charles F. Vardeman II, and J. Daniel Gezelter\\
31 Department of Chemistry and Biochemistry\\
32 University of Notre Dame\\
33 Notre Dame, Indiana 46556}
34
35 \date{\today}
36 \maketitle
37
38 \section{Model and Methodology}
39
40 \subsection{The Phospholipid Model}
41 \label{sec:lipidModel}
42
43 \begin{figure}
44 \centering
45 \includegraphics[angle=-90,width=170mm]{lipidModel.epsi}
46 \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
47 \label{fig:lipidModel}
48 \end{figure}
49
50 The lipid molecules in our simulations are unified atom models. Figure
51 \ref{fig:lipidModel} shows a schematic for one of our
52 lipids. The head group of the phospholipid is replaced by a single
53 Lennard-Jones sphere with a freely oriented dipole placed at it's
54 center. The magnitude of the dipole moment is 20.6 D, chosen to match
55 that of DPPC\cite{Cevc87}. The tail atoms are unified $\text{CH}_2$
56 and $\text{CH}_3$ atoms and are also modeled as Lennard-Jones
57 spheres. The total potential for the lipid is represented by Equation
58 \ref{eq:lipidModelPot}.
59
60 \begin{equation}
61 V_{\text{lipid}} =
62 \sum_{i}V_{i}^{\text{internal}}
63 + \sum_i \sum_{j>i} \sum_{\alpha_i}
64 \sum_{\beta_j}
65 V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}})
66 +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
67 \label{eq:lipidModelPot}
68 \end{equation}
69 where,
70 \begin{equation}
71 V_{i}^{\text{internal}} =
72 \sum_{\text{bends}}V_{\text{bend}}(\theta_{\alpha\beta\gamma})
73 + \sum_{\text{torsions}}V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
74 + \sum_{\alpha_i} \sum_{\beta_i > (\alpha_i + 4)}V_{\text{LJ}}
75 (r_{\alpha_i \beta_i})
76 \label{eq:lipidModelPotInternal}
77 \end{equation}
78
79 The non-bonded interactions, $V_{\text{LJ}}$ and $V_{\text{dp}}$, are
80 the Lennard-Jones and dipole-dipole interactions respectively. For the
81 bonded potentials, only the bend and the torsional potentials are
82 calculated. The bond potential is not calculated, and the bond lengths
83 are constrained via RATTLE.\cite{leach01:mm} The bend potential is of
84 the form:
85 \begin{equation}
86 V_{\text{bend}}(\theta_{\alpha\beta\gamma})
87 = k_{\theta}\frac{(\theta_{\alpha\beta\gamma} - \theta_0)^2}{2}
88 \label{eq:bendPot}
89 \end{equation}
90 Where $k_{\theta}$ sets the stiffness of the bend potential, and $\theta_0$
91 sets the equilibrium bend angle. The torsion potential was given by:
92 \begin{equation}
93 V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
94 = c_1 [1+\cos\phi_{\alpha\beta\gamma\zeta}]
95 + c_2 [1 - \cos(2\phi_{\alpha\beta\gamma\zeta})]
96 + c_3 [1 + \cos(3\phi_{\alpha\beta\gamma\zeta})]
97 \label{eq:torsPot}
98 \end{equation}
99 All parameters for bonded and non-bonded potentials in the tail atoms
100 were taken from TraPPE.\cite{Siepmann1998} The bonded interactions for
101 the head atom were also taken from TraPPE, however it's dipole moment
102 and mass were based on the properties of the phosphatidylcholine head
103 group. The Lennard-Jones parameter for the head group was chosen such
104 that it was roughly twice the size of a $\text{CH}_3$ atom, and it's
105 well depth was set to be approximately equal to that of $\text{CH}_3$.
106
107
108 \end{document}
109