ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdRipple/mdripple.tex
(Generate patch)

Comparing trunk/mdRipple/mdripple.tex (file contents):
Revision 3198 by xsun, Wed Jul 25 22:42:56 2007 UTC vs.
Revision 3199 by gezelter, Thu Jul 26 19:47:06 2007 UTC

# Line 1 | Line 1
1   %\documentclass[aps,pre,twocolumn,amssymb,showpacs,floatfix]{revtex4}
2   \documentclass[aps,pre,preprint,amssymb,showpacs]{revtex4}
3 + \usepackage{amsmath}
4 + \usepackage{amssymb}
5   \usepackage{graphicx}
6  
7   \begin{document}
# Line 8 | Line 10
10  
11   %\bibliographystyle{aps}
12  
13 < \title{Dipolar Ordering of the Ripple Phase in Lipid Membranes}
13 > \title{Dipolar Ordering in Molecular-scale Models of the Ripple Phase
14 > in Lipid Membranes}
15   \author{Xiuquan Sun and J. Daniel Gezelter}
16   \email[E-mail:]{gezelter@nd.edu}
17   \affiliation{Department of Chemistry and Biochemistry,\\
18 < University of Notre Dame, \\
18 > University of Notre Dame, \\
19   Notre Dame, Indiana 46556}
20  
21   \date{\today}
# Line 88 | Line 91 | the ripple phase has also been studied by the XXX grou
91   interdigitated.  The mechanism for the formation of the ripple phase
92   suggested by their work is a packing competition between the head
93   groups and the tails of the lipid molecules.\cite{Carlson87} Recently,
94 < the ripple phase has also been studied by the XXX group using Monte
94 > the ripple phase has also been studied by Lenz and Schmid using Monte
95   Carlo simulations.\cite{Lenz07} Their structures are similar to the De
96   Vries {\it et al.} structures except that the connection between the
97   two leaves of the bilayer is a narrow interdigitated line instead of
# Line 116 | Line 119 | work on the spontaneous formation of dipolar molecules
119   this was evident in the ordering of the dipole director axis
120   perpendicular to the wave vector of the surface ripples.  A similiar
121   phenomenon has also been observed by Tsonchev {\it et al.} in their
122 < work on the spontaneous formation of dipolar molecules into curved
123 < nano-structures.\cite{Tsonchev04}
122 > work on the spontaneous formation of dipolar peptide chains into
123 > curved nano-structures.\cite{Tsonchev04,Tsonchev04II}
124  
125   In this paper, we construct a somewhat more realistic molecular-scale
126   lipid model than our previous ``web of dipoles'' and use molecular
# Line 133 | Line 136 | Our simple molecular-scale lipid model for studying th
136   \section{Computational Model}
137   \label{sec:method}
138  
139 + \begin{figure}[htb]
140 + \centering
141 + \includegraphics[width=4in]{lipidModels}
142 + \caption{Three different representations of DPPC lipid molecules,
143 + including the chemical structure, an atomistic model, and the
144 + head-body ellipsoidal coarse-grained model used in this
145 + work.\label{fig:lipidModels}}
146 + \end{figure}
147 +
148   Our simple molecular-scale lipid model for studying the ripple phase
149   is based on two facts: one is that the most essential feature of lipid
150   molecules is their amphiphilic structure with polar head groups and
# Line 155 | Line 167 | the point dipole rigidly in this orientation.  
167   nearly perpendicular to the tail, so we have fixed the direction of
168   the point dipole rigidly in this orientation.  
169  
158 \begin{figure}[htb]
159 \centering
160 \includegraphics[width=\linewidth]{lipidModels}
161 \caption{Three different representations of DPPC lipid molecules,
162 including the chemical structure, an atomistic model, and the
163 head-body ellipsoidal coarse-grained model used in this
164 work.\label{fig:lipidModels}}
165 \end{figure}
166
170   The ellipsoidal portions of the model interact via the Gay-Berne
171   potential which has seen widespread use in the liquid crystal
172 < community.  In its original form, the Gay-Berne potential was a single
173 < site model for the interactions of rigid ellipsoidal
172 > community.  Ayton and Voth have also used Gay-Berne ellipsoids for
173 > modelling large length-scale properties of lipid
174 > bilayers.\cite{Ayton01} In its original form, the Gay-Berne potential
175 > was a single site model for the interactions of rigid ellipsoidal
176   molecules.\cite{Gay81} It can be thought of as a modification of the
177   Gaussian overlap model originally described by Berne and
178   Pechukas.\cite{Berne72} The potential is constructed in the familiar
# Line 183 | Line 188 | -\left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_
188   \label{eq:gb}
189   \end{eqnarray*}
190  
186
187
191   The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
192 < \hat{r}}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
193 < \hat{u}}_{j},{\bf \hat{r}}))$ parameters
192 > \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
193 > \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
194   are dependent on the relative orientations of the two molecules (${\bf
195   \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
196 < intermolecular separation (${\bf \hat{r}}$).  The functional forms for
197 < $\sigma({\bf
195 < \hat{u}}_{i},{\bf
196 < \hat{u}}_{j},{\bf \hat{r}})$ and $\epsilon({\bf \hat{u}}_{i},{\bf
197 < \hat{u}}_{j},{\bf \hat{r}}))$ are given elsewhere
198 < and will not be repeated here.  However, $\epsilon$ and $\sigma$ are
199 < governed by two anisotropy parameters,
196 > intermolecular separation (${\bf \hat{r}}_{ij}$).  $\sigma$ and
197 > $\sigma_0$ are also governed by shape mixing and anisotropy variables,
198   \begin {equation}
199   \begin{array}{rcl}
200 < \chi & = & \frac
201 < {(\sigma_{e}/\sigma_{s})^2-1}{(\sigma_{e}/\sigma_{s})^2+1} \\ \\
202 < \chi\prime & = & \frac {1-(\epsilon_{e}/\epsilon_{s})^{1/\mu}}{1+(\epsilon_{e}/
203 < \epsilon_{s})^{1/\mu}}
200 > \sigma_0 & = & \sqrt{d_i^2 + d_j^2} \\ \\
201 > \chi & = & \left[ \frac{\left( l_i^2 - d_i^2 \right) \left(l_j^2 -
202 > d_j^2 \right)}{\left( l_j^2 + d_i^2 \right) \left(l_i^2 +
203 > d_j^2 \right)}\right]^{1/2} \\ \\
204 > \alpha^2 & = & \left[ \frac{\left( l_i^2 - d_i^2 \right) \left(l_j^2 +
205 > d_i^2 \right)}{\left( l_j^2 - d_j^2 \right) \left(l_i^2 +
206 > d_j^2 \right)}\right]^{1/2},
207   \end{array}
208   \end{equation}
209 < In these equations, $\sigma$ and $\epsilon$ refer to the point of
210 < closest contact and the depth of the well in different orientations of
211 < the two molecules.  The subscript $s$ refers to the {\it side-by-side}
212 < configuration where $\sigma$ has it's smallest value,
213 < $\sigma_{s}$, and where the potential well is $\epsilon_{s}$ deep.
214 < The subscript $e$ refers to the {\it end-to-end} configuration where
215 < $\sigma$ is at it's largest value, $\sigma_{e}$ and where the well
216 < depth, $\epsilon_{e}$ is somewhat smaller than in the side-by-side
217 < configuration.  For the prolate ellipsoids we are using, we have
209 > where $l$ and $d$ describe the length and width of each uniaxial
210 > ellipsoid.  These shape anisotropy parameters can then be used to
211 > calculate the range function,
212 > \begin {equation}
213 > \sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) = \sigma_{0}
214 > \left[ 1- \left\{ \frac{ \chi \alpha^2 ({\bf \hat{u}}_i \cdot {\bf
215 > \hat{r}}_{ij} ) + \chi \alpha^{-2} ({\bf \hat{u}}_j \cdot {\bf
216 > \hat{r}}_{ij} ) - 2 \chi^2 ({\bf \hat{u}}_i \cdot {\bf
217 > \hat{r}}_{ij} )({\bf \hat{u}}_j \cdot {\bf
218 > \hat{r}}_{ij} ) ({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j)}{1 - \chi^2
219 > \left({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j\right)^2} \right\}
220 > \right]^{-1/2}
221 > \end{equation}
222 >
223 > Gay-Berne ellipsoids also have an energy scaling parameter,
224 > $\epsilon^s$, which describes the well depth for two identical
225 > ellipsoids in a {\it side-by-side} configuration.  Additionaly, a well
226 > depth aspect ratio, $\epsilon^r = \epsilon^e / \epsilon^s$, describes
227 > the ratio between the well depths in the {\it end-to-end} and
228 > side-by-side configurations.  As in the range parameter, a set of
229 > mixing and anisotropy variables can be used to describe the well
230 > depths for dissimilar particles,
231 > \begin {eqnarray*}
232 > \epsilon_0 & = & \sqrt{\epsilon^s_i  * \epsilon^s_j} \\ \\
233 > \epsilon^r & = & \sqrt{\epsilon^r_i  * \epsilon^r_j} \\ \\
234 > \chi' & = & \frac{1 - (\epsilon^r)^{1/\mu}}{1 + (\epsilon^r)^{1/\mu}}
235 > \\ \\
236 > \alpha'^2 & = & \left[1 + (\epsilon^r)^{1/\mu}\right]^{-1}
237 > \end{eqnarray*}
238 > The form of the strength function is somewhat complicated,
239 > \begin {eqnarray*}
240 > \epsilon({\bf \hat{u}}_{i}, {\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) & = &
241 > \epsilon_{0}  \epsilon_{1}^{\nu}({\bf \hat{u}}_{i}.{\bf \hat{u}}_{j})
242 > \epsilon_{2}^{\mu}({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
243 > \hat{r}}_{ij}) \\ \\
244 > \epsilon_{1}({\bf \hat{u}}_{i},{\bf \hat{u}}_{j}) & = &
245 > \left[1-\chi^{2}({\bf \hat{u}}_{i}.{\bf
246 > \hat{u}}_{j})^{2}\right]^{-1/2} \\ \\
247 > \epsilon_{2}({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) &
248 > = &
249 > 1 - \left\{ \frac{ \chi' \alpha'^2 ({\bf \hat{u}}_i \cdot {\bf
250 > \hat{r}}_{ij} ) + \chi' \alpha'^{-2} ({\bf \hat{u}}_j \cdot {\bf
251 > \hat{r}}_{ij} ) - 2 \chi'^2 ({\bf \hat{u}}_i \cdot {\bf
252 > \hat{r}}_{ij} )({\bf \hat{u}}_j \cdot {\bf
253 > \hat{r}}_{ij} ) ({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j)}{1 - \chi'^2
254 > \left({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j\right)^2} \right\},
255 > \end {eqnarray*}
256 > although many of the quantities and derivatives are identical with
257 > those obtained for the range parameter. Ref. \onlinecite{Luckhurst90}
258 > has a particularly good explanation of the choice of the Gay-Berne
259 > parameters $\mu$ and $\nu$ for modeling liquid crystal molecules. An
260 > excellent overview of the computational methods that can be used to
261 > efficiently compute forces and torques for this potential can be found
262 > in Ref. \onlinecite{Golubkov06}
263 >
264 > The choices of parameters we have used in this study correspond to a
265 > shape anisotropy of 3 for the chain portion of the molecule.  In
266 > principle, this could be varied to allow for modeling of longer or
267 > shorter chain lipid molecules. For these prolate ellipsoids, we have:
268   \begin{equation}
269   \begin{array}{rcl}
270 < \sigma_{s} & < & \sigma_{e} \\
271 < \epsilon_{s} & > & \epsilon_{e}
270 > d & < & l \\
271 > \epsilon^{r} & < & 1
272   \end{array}
273   \end{equation}
223 Ref. \onlinecite{Luckhurst90} has a particularly good explanation of the
224 choice of the Gay-Berne parameters $\mu$ and $\nu$ for modeling liquid
225 crystal molecules.
274  
275 < The breadth and length of tail are $\sigma_0$, $3\sigma_0$,
276 < corresponding to a shape anisotropy of 3 for the chain portion of the
277 < molecule.  In principle, this could be varied to allow for modeling of
278 < longer or shorter chain lipid molecules.
275 > \begin{figure}[htb]
276 > \centering
277 > \includegraphics[width=4in]{2lipidModel}
278 > \caption{The parameters defining the behavior of the lipid
279 > models. $l / d$ is the ratio of the head group to body diameter.
280 > Molecular bodies had a fixed aspect ratio of 3.0.  The solvent model
281 > was a simplified 4-water bead ($\sigma_w \approx d$) that has been
282 > used in other coarse-grained (DPD) simulations.  The dipolar strength
283 > (and the temperature and pressure) were the only other parameters that
284 > were varied systematically.\label{fig:lipidModel}}
285 > \end{figure}
286  
287   To take into account the permanent dipolar interactions of the
288   zwitterionic head groups, we place fixed dipole moments $\mu_{i}$ at
289 < one end of the Gay-Berne particles.  The dipoles will be oriented at
290 < an angle $\theta = \pi / 2$ relative to the major axis.  These dipoles
289 > one end of the Gay-Berne particles.  The dipoles are oriented at an
290 > angle $\theta = \pi / 2$ relative to the major axis.  These dipoles
291   are protected by a head ``bead'' with a range parameter which we have
292 < varied between $1.20\sigma_0$ and $1.41\sigma_0$.  The head groups
293 < interact with each other using a combination of Lennard-Jones,
292 > varied between $1.20 d$ and $1.41 d$.  The head groups interact with
293 > each other using a combination of Lennard-Jones,
294   \begin{eqnarray*}
295   V_{ij} = 4\epsilon \left[\left(\frac{\sigma_h}{r_{ij}}\right)^{12} -
296   \left(\frac{\sigma_h}{r_{ij}}\right)^6\right],
297   \end{eqnarray*}
298 < and dipole,
298 > and dipole-dipole,
299   \begin{eqnarray*}
300   V_{ij} = \frac{|\mu|^2}{4 \pi \epsilon_0 r_{ij}^3}
301   \left[ \hat{\bf u}_i \cdot \hat{\bf u}_j - 3 (\hat{\bf u}_i \cdot
# Line 249 | Line 304 | pointing along the inter-dipole vector $\mathbf{r}_{ij
304   potentials.  
305   In these potentials, $\mathbf{\hat u}_i$ is the unit vector pointing
306   along dipole $i$ and $\mathbf{\hat r}_{ij}$ is the unit vector
307 < pointing along the inter-dipole vector $\mathbf{r}_{ij}$.
307 > pointing along the inter-dipole vector $\mathbf{r}_{ij}$.  
308  
309   For the interaction between nonequivalent uniaxial ellipsoids (in this
310 < case, between spheres and ellipsoids), the range parameter is
311 < generalized as\cite{Cleaver96}
312 < \begin{eqnarray*}
313 < \sigma({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j}, {\mathbf{\hat r}_{ij}}) =
314 < {\sigma_{0}} \left(1-\frac{1}{2}\chi\left[\frac{(\alpha{\mathbf{\hat r}_{ij}}
260 < \cdot {\mathbf{\hat u}_i} + \alpha^{-1}{\mathbf{\hat r}_{ij}} \cdot {\mathbf{\hat
261 < u}_j})^2}{1+\chi({\mathbf{\hat u}_i} \cdot {\mathbf{\hat u}_j})} +
262 < \frac{(\alpha{\mathbf{\hat r}_{ij}} \cdot {\mathbf{\hat u}_i} - \alpha^{-1}{\mathbf{\hat r}_{ij}}
263 < \cdot {\mathbf{\hat u}_j})^2}{1-\chi({\mathbf{\hat u}_i} \cdot
264 < {\mathbf{\hat u}_j})} \right] \right)^{-\frac{1}{2}}
265 < \end{eqnarray*}
266 < where $\alpha$ is given by
267 < \begin{eqnarray*}
268 < \alpha^2 =
269 < \left[\frac{\left({\sigma_e}_i^2-{\sigma_s}_i^2\right)\left({\sigma_e}_j^2+{\sigma_s}_i^2\right)}{\left({\sigma_e}_j^2-{\sigma_s}_j^2\right)\left({\sigma_e}_i^2+{\sigma_s}_j^2\right)}
270 < \right]^{\frac{1}{2}}
271 < \end{eqnarray*}
272 < the strength parameter has been adjusted as suggested by Cleaver {\it
273 < et al.}\cite{Cleaver96}  A switching function has been applied to all
274 < potentials to smoothly turn off the interactions between a range of  $22$  and $25$ \AA.
310 > case, between spheres and ellipsoids), the spheres are treated as
311 > ellipsoids with an aspect ratio of 1 ($d = l$) and with an well depth
312 > ratio of 1 ($\epsilon^e = \epsilon^s$).  The form of the Gay-Berne
313 > potential we are using was generalized by Cleaver {\it et al.} and is
314 > appropriate for dissimilar uniaxial ellipsoids.\cite{Cleaver96}
315  
316 < The solvent model in our simulations is identical to one used by XXX
317 < in their dissipative particle dynamics (DPD) simulation of lipid
318 < bilayers.]cite{XXX} This solvent bead is a single site that represents
319 < four water molecules (m = 72 amu) and has comparable density and
320 < diffusive behavior to liquid water.  However, since there are no
321 < electrostatic sites on these beads, this solvent model cannot
322 < replicate the dielectric properties of water.
316 > The solvent model in our simulations is identical to one used by
317 > Marrink {\it et al.}  in their dissipative particle dynamics (DPD)
318 > simulation of lipid bilayers.\cite{Marrink04} This solvent bead is a single
319 > site that represents four water molecules (m = 72 amu) and has
320 > comparable density and diffusive behavior to liquid water.  However,
321 > since there are no electrostatic sites on these beads, this solvent
322 > model cannot replicate the dielectric properties of water.
323   \begin{table*}
324   \begin{minipage}{\linewidth}
325   \begin{center}
326 < \caption{}
327 < \begin{tabular}{lccc}
326 > \caption{Potential parameters used for molecular-scale coarse-grained
327 > lipid simulations}
328 > \begin{tabular}{llccc}
329   \hline
330 < N/A & Head & Chain & Solvent \\
330 >  & &  Head & Chain & Solvent \\
331   \hline
332 < $\sigma_0$ (\AA) & varied & 4.6 & 4.7 \\
333 < l (aspect ratio) & N/A & 3 & N/A \\
334 < $\epsilon_0$ (kcal/mol) & 0.185 & 1.0 & 0.8 \\
335 < $\epsilon_e$ (aspect ratio) & N/A & 0.2 & N/A \\
336 < M (amu) & 196 & 760 & 72.06112 \\
337 < $I_{xx}$, $I_{yy}$, $I_{zz}$ (amu \AA$^2$) & 1125, 1125, 0 & 45000, 45000, 9000 & N/A \\
338 < $\mu$ (Debye) & varied & N/A & N/A \\
332 > $d$ (\AA) & & varied & 4.6 & 4.7 \\
333 > $l$ (\AA) & & 1 & 3 & 1 \\
334 > $\epsilon^s$ (kcal/mol) & & 0.185 & 1.0 & 0.8 \\
335 > $\epsilon_r$ (well-depth aspect ratio)& & 1 & 0.2 &  1 \\
336 > $m$ (amu) & & 196 & 760 & 72.06112 \\
337 > $\overleftrightarrow{\mathsf I}$ (amu \AA$^2$) & & & & \\
338 > \multicolumn{2}c{$I_{xx}$} & 1125 & 45000 & N/A \\
339 > \multicolumn{2}c{$I_{yy}$} & 1125 & 45000 & N/A \\
340 > \multicolumn{2}c{$I_{zz}$} &  0 &    9000 & N/A \\
341 > $\mu$ (Debye) & & varied & 0 & 0 \\
342   \end{tabular}
343   \label{tab:parameters}
344   \end{center}
345   \end{minipage}
346   \end{table*}
347  
348 < \begin{figure}[htb]
349 < \centering
306 < \includegraphics[width=\linewidth]{2lipidModel}
307 < \caption{The parameters defining the behavior of the lipid
308 < models. $\sigma_h / \sigma_0$ is the ratio of the head group to body
309 < diameter.  Molecular bodies had a fixed aspect ratio of 3.0.  The
310 < solvent model was a simplified 4-water bead ($\sigma_w = 1.02
311 < \sigma_0$) that has been used in other coarse-grained (DPD) simulations.
312 < The dipolar strength (and the temperature and pressure) were the only
313 < other parameters that were varied
314 < systematically.\label{fig:lipidModel}}
315 < \end{figure}
348 > A switching function has been applied to all potentials to smoothly
349 > turn off the interactions between a range of $22$ and $25$ \AA.
350  
351   \section{Experimental Methodology}
352   \label{sec:experiment}
# Line 358 | Line 392 | non-thermal.
392   non-thermal.
393   \begin{figure}[htb]
394   \centering
395 < \includegraphics[width=\linewidth]{phaseCartoon}
395 > \includegraphics[width=4in]{phaseCartoon}
396   \caption{A sketch to discribe the structure of the phases observed in
397   our simulations.\label{fig:phaseCartoon}}
398   \end{figure}
# Line 410 | Line 444 | simulations.
444  
445   \begin{figure}[htb]
446   \centering
447 < \includegraphics[width=\linewidth]{topDown}
447 > \includegraphics[width=4in]{topDown}
448   \caption{Top views of the flat (upper), asymmetric ripple (middle),
449   and symmetric ripple (lower) phases.  Note that the head-group dipoles
450   have formed head-to-tail chains in all three of these phases, but in
# Line 466 | Line 500 | rapidly decreasing $P_2$ ordering for the molecular bo
500   normal of the surface,(making this structure remindcent of the
501   $L_{\beta}$ phase. Increasing the size of the heads, results in
502   rapidly decreasing $P_2$ ordering for the molecular bodies.
503 +
504   \begin{figure}[htb]
505   \centering
506   \includegraphics[width=\linewidth]{rP2}
# Line 548 | Line 583 | temperature.\label{fig:tP2}}
583   \section{Discussion}
584   \label{sec:discussion}
585  
586 + \newpage
587   \bibliography{mdripple}
588   \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines