ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Symplectic.cpp
Revision: 134
Committed: Fri Oct 11 15:09:09 2002 UTC (21 years, 9 months ago) by chuckv
File size: 15027 byte(s)
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 mmeineke 10 #include <iostream>
2     #include <cstdlib>
3    
4     #include "Integrator.hpp"
5     #include "Thermo.hpp"
6     #include "ReadWrite.hpp"
7    
8    
9     extern "C"{
10    
11     void v_constrain_a_( double &dt, int &n_atoms, double* mass,
12     double* Rx, double* Ry, double* Rz,
13     double* Vx, double* Vy, double* Vz,
14     double* Fx, double* Fy, double* Fz,
15     int &n_constrained, double *constr_sqr,
16     int* constr_i, int* constr_j,
17     double &box_x, double &box_y, double &box_z );
18    
19     void v_constrain_b_( double &dt, int &n_atoms, double* mass,
20     double* Rx, double* Ry, double* Rz,
21     double* Vx, double* Vy, double* Vz,
22     double* Fx, double* Fy, double* Fz,
23     double &Kinetic,
24     int &n_constrained, double *constr_sqr,
25     int* constr_i, int* constr_j,
26     double &box_x, double &box_y, double &box_z );
27     }
28    
29    
30    
31    
32     Symplectic::Symplectic( SimInfo* the_entry_plug ){
33     entry_plug = the_entry_plug;
34     isFirst = 1;
35    
36     srInteractions = entry_plug->sr_interactions;
37     longRange = entry_plug->longRange;
38     nSRI = entry_plug->n_SRI;
39    
40     // give a little love back to the SimInfo object
41    
42     if( entry_plug->the_integrator != NULL ) delete entry_plug->the_integrator;
43     entry_plug->the_integrator = this;
44    
45     // grab the masses
46    
47     mass = new double[entry_plug->n_atoms];
48     for(int i = 0; i < entry_plug->n_atoms; i++){
49     mass[i] = entry_plug->atoms[i]->getMass();
50     }
51    
52    
53     // check for constraints
54    
55     is_constrained = 0;
56    
57     Constraint *temp_con;
58     Constraint *dummy_plug;
59     temp_con = new Constraint[nSRI];
60     n_constrained = 0;
61     int constrained = 0;
62    
63     for(int i = 0; i < nSRI; i++){
64    
65     constrained = srInteractions[i]->is_constrained();
66    
67     if(constrained){
68    
69     dummy_plug = srInteractions[i]->get_constraint();
70     temp_con[n_constrained].set_a( dummy_plug->get_a() );
71     temp_con[n_constrained].set_b( dummy_plug->get_b() );
72     temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
73    
74     n_constrained++;
75     constrained = 0;
76     }
77     }
78    
79     if(n_constrained > 0){
80    
81     is_constrained = 1;
82     constrained_i = new int[n_constrained];
83     constrained_j = new int[n_constrained];
84     constrained_dsqr = new double[n_constrained];
85    
86     for( int i = 0; i < n_constrained; i++){
87    
88     /* add 1 to the index for the fortran arrays. */
89    
90     constrained_i[i] = temp_con[i].get_a() + 1;
91     constrained_j[i] = temp_con[i].get_b() + 1;
92     constrained_dsqr[i] = temp_con[i].get_dsqr();
93     }
94     }
95    
96     delete[] temp_con;
97     }
98    
99     Symplectic::~Symplectic() {
100    
101     if( n_constrained ){
102     delete[] constrained_i;
103     delete[] constrained_j;
104     delete[] constrained_dsqr;
105     }
106    
107     }
108    
109    
110     void Symplectic::integrate( void ){
111    
112     const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2
113    
114     int i, j; // loop counters
115     int nAtoms = entry_plug->n_atoms; // the number of atoms
116     double kE = 0.0; // the kinetic energy
117     double rot_kE;
118     double trans_kE;
119     int tl; // the time loop conter
120     double dt2; // half the dt
121    
122     double vx, vy, vz; // the velocities
123 chuckv 134 // double vx2, vy2, vz2; // the square of the velocities
124 mmeineke 10 double rx, ry, rz; // the postitions
125    
126     double ji[3]; // the body frame angular momentum
127     double jx2, jy2, jz2; // the square of the angular momentums
128     double Tb[3]; // torque in the body frame
129     double angle; // the angle through which to rotate the rotation matrix
130     double A[3][3]; // the rotation matrix
131    
132 mmeineke 25 int time;
133 mmeineke 10
134     double dt = entry_plug->dt;
135     double runTime = entry_plug->run_time;
136     double sampleTime = entry_plug->sampleTime;
137     double statusTime = entry_plug->statusTime;
138     double thermalTime = entry_plug->thermalTime;
139    
140     int n_loops = (int)( runTime / dt );
141     int sample_n = (int)( sampleTime / dt );
142     int status_n = (int)( statusTime / dt );
143     int vel_n = (int)( thermalTime / dt );
144    
145     Thermo *tStats = new Thermo( entry_plug );
146    
147     StatWriter* e_out = new StatWriter( entry_plug );
148     DumpWriter* dump_out = new DumpWriter( entry_plug );
149    
150    
151     Atom** atoms = entry_plug->atoms;
152     DirectionalAtom* dAtom;
153     dt2 = 0.5 * dt;
154    
155     // initialize the forces the before the first step
156    
157    
158     for(i = 0; i < nAtoms; i++){
159     atoms[i]->zeroForces();
160     }
161    
162     for(i = 0; i < nSRI; i++){
163    
164     srInteractions[i]->calc_forces();
165     }
166    
167     longRange->calc_forces();
168    
169     if( entry_plug->setTemp ){
170    
171     tStats->velocitize();
172     }
173    
174 mmeineke 25 dump_out->writeDump( 0.0 );
175     e_out->writeStat( 0.0 );
176    
177 mmeineke 10 if( n_constrained ){
178    
179     double *Rx = new double[nAtoms];
180     double *Ry = new double[nAtoms];
181     double *Rz = new double[nAtoms];
182    
183     double *Vx = new double[nAtoms];
184     double *Vy = new double[nAtoms];
185     double *Vz = new double[nAtoms];
186    
187     double *Fx = new double[nAtoms];
188     double *Fy = new double[nAtoms];
189     double *Fz = new double[nAtoms];
190    
191    
192     for( tl=0; tl < n_loops; tl++ ){
193    
194     for( j=0; j<nAtoms; j++ ){
195    
196     Rx[j] = atoms[j]->getX();
197     Ry[j] = atoms[j]->getY();
198     Rz[j] = atoms[j]->getZ();
199    
200     Vx[j] = atoms[j]->get_vx();
201     Vy[j] = atoms[j]->get_vy();
202     Vz[j] = atoms[j]->get_vz();
203    
204     Fx[j] = atoms[j]->getFx();
205     Fy[j] = atoms[j]->getFy();
206     Fz[j] = atoms[j]->getFz();
207    
208     }
209    
210     v_constrain_a_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,
211     Fx, Fy, Fz,
212     n_constrained, constrained_dsqr,
213     constrained_i, constrained_j,
214     entry_plug->box_x,
215     entry_plug->box_y,
216     entry_plug->box_z );
217    
218     for( j=0; j<nAtoms; j++ ){
219    
220     atoms[j]->setX(Rx[j]);
221     atoms[j]->setY(Ry[j]);
222     atoms[j]->setZ(Rz[j]);
223    
224     atoms[j]->set_vx(Vx[j]);
225     atoms[j]->set_vy(Vy[j]);
226     atoms[j]->set_vz(Vz[j]);
227     }
228    
229    
230     for( i=0; i<nAtoms; i++ ){
231     if( atoms[i]->isDirectional() ){
232    
233     dAtom = (DirectionalAtom *)atoms[i];
234    
235     // get and convert the torque to body frame
236    
237     Tb[0] = dAtom->getTx();
238     Tb[1] = dAtom->getTy();
239     Tb[2] = dAtom->getTz();
240    
241     dAtom->lab2Body( Tb );
242    
243     // get the angular momentum, and propagate a half step
244    
245     ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
246     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
247     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
248    
249     // get the atom's rotation matrix
250    
251     A[0][0] = dAtom->getAxx();
252     A[0][1] = dAtom->getAxy();
253     A[0][2] = dAtom->getAxz();
254    
255     A[1][0] = dAtom->getAyx();
256     A[1][1] = dAtom->getAyy();
257     A[1][2] = dAtom->getAyz();
258    
259     A[2][0] = dAtom->getAzx();
260     A[2][1] = dAtom->getAzy();
261     A[2][2] = dAtom->getAzz();
262    
263    
264     // use the angular velocities to propagate the rotation matrix a
265     // full time step
266    
267    
268     angle = dt2 * ji[0] / dAtom->getIxx();
269     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
270    
271     angle = dt2 * ji[1] / dAtom->getIyy();
272     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
273    
274     angle = dt * ji[2] / dAtom->getIzz();
275     this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis
276    
277     angle = dt2 * ji[1] / dAtom->getIyy();
278     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
279    
280     angle = dt2 * ji[0] / dAtom->getIxx();
281     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
282    
283    
284     dAtom->setA( A );
285     dAtom->setJx( ji[0] );
286     dAtom->setJy( ji[1] );
287     dAtom->setJz( ji[2] );
288     }
289     }
290    
291     // calculate the forces
292    
293     for(j = 0; j < nAtoms; j++){
294     atoms[j]->zeroForces();
295     }
296    
297     for(j = 0; j < nSRI; j++){
298     srInteractions[j]->calc_forces();
299     }
300    
301     longRange->calc_forces();
302    
303     // move b
304    
305     for( j=0; j<nAtoms; j++ ){
306    
307     Rx[j] = atoms[j]->getX();
308     Ry[j] = atoms[j]->getY();
309     Rz[j] = atoms[j]->getZ();
310    
311     Vx[j] = atoms[j]->get_vx();
312     Vy[j] = atoms[j]->get_vy();
313     Vz[j] = atoms[j]->get_vz();
314    
315     Fx[j] = atoms[j]->getFx();
316     Fy[j] = atoms[j]->getFy();
317     Fz[j] = atoms[j]->getFz();
318     }
319    
320     v_constrain_b_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,
321     Fx, Fy, Fz,
322     kE, n_constrained, constrained_dsqr,
323     constrained_i, constrained_j,
324     entry_plug->box_x,
325     entry_plug->box_y,
326     entry_plug->box_z );
327    
328     for( j=0; j<nAtoms; j++ ){
329    
330     atoms[j]->setX(Rx[j]);
331     atoms[j]->setY(Ry[j]);
332     atoms[j]->setZ(Rz[j]);
333    
334     atoms[j]->set_vx(Vx[j]);
335     atoms[j]->set_vy(Vy[j]);
336     atoms[j]->set_vz(Vz[j]);
337     }
338    
339     for( i=0; i< nAtoms; i++ ){
340    
341     if( atoms[i]->isDirectional() ){
342    
343     dAtom = (DirectionalAtom *)atoms[i];
344    
345     // get and convert the torque to body frame
346    
347     Tb[0] = dAtom->getTx();
348     Tb[1] = dAtom->getTy();
349     Tb[2] = dAtom->getTz();
350    
351     dAtom->lab2Body( Tb );
352    
353     // get the angular momentum, and complete the angular momentum
354     // half step
355    
356     ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
357     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
358     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
359    
360     dAtom->setJx( ji[0] );
361     dAtom->setJy( ji[1] );
362     dAtom->setJz( ji[2] );
363     }
364     }
365 mmeineke 25
366     time = tl + 1;
367    
368 mmeineke 10 if( entry_plug->setTemp ){
369 mmeineke 25 if( !(time % vel_n) ) tStats->velocitize();
370 mmeineke 10 }
371 mmeineke 25 if( !(time % sample_n) ) dump_out->writeDump( time * dt );
372     if( !(time % status_n) ) e_out->writeStat( time * dt );
373 mmeineke 10 }
374     }
375     else{
376    
377     for( tl=0; tl<n_loops; tl++ ){
378    
379     kE = 0.0;
380     rot_kE= 0.0;
381     trans_kE = 0.0;
382    
383     for( i=0; i<nAtoms; i++ ){
384    
385     // velocity half step
386    
387     vx = atoms[i]->get_vx() +
388     ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert;
389     vy = atoms[i]->get_vy() +
390     ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert;
391     vz = atoms[i]->get_vz() +
392     ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert;
393    
394     // position whole step
395    
396     rx = atoms[i]->getX() + dt * vx;
397     ry = atoms[i]->getY() + dt * vy;
398     rz = atoms[i]->getZ() + dt * vz;
399    
400     atoms[i]->setX( rx );
401     atoms[i]->setY( ry );
402     atoms[i]->setZ( rz );
403    
404     atoms[i]->set_vx( vx );
405     atoms[i]->set_vy( vy );
406     atoms[i]->set_vz( vz );
407    
408     if( atoms[i]->isDirectional() ){
409    
410     dAtom = (DirectionalAtom *)atoms[i];
411    
412     // get and convert the torque to body frame
413    
414     Tb[0] = dAtom->getTx();
415     Tb[1] = dAtom->getTy();
416     Tb[2] = dAtom->getTz();
417    
418     dAtom->lab2Body( Tb );
419    
420     // get the angular momentum, and propagate a half step
421    
422     ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
423     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
424     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
425    
426     // get the atom's rotation matrix
427    
428     A[0][0] = dAtom->getAxx();
429     A[0][1] = dAtom->getAxy();
430     A[0][2] = dAtom->getAxz();
431    
432     A[1][0] = dAtom->getAyx();
433     A[1][1] = dAtom->getAyy();
434     A[1][2] = dAtom->getAyz();
435    
436     A[2][0] = dAtom->getAzx();
437     A[2][1] = dAtom->getAzy();
438     A[2][2] = dAtom->getAzz();
439    
440    
441     // use the angular velocities to propagate the rotation matrix a
442     // full time step
443    
444    
445     angle = dt2 * ji[0] / dAtom->getIxx();
446     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
447    
448     angle = dt2 * ji[1] / dAtom->getIyy();
449     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
450    
451     angle = dt * ji[2] / dAtom->getIzz();
452     this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis
453    
454     angle = dt2 * ji[1] / dAtom->getIyy();
455     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
456    
457     angle = dt2 * ji[0] / dAtom->getIxx();
458     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
459    
460    
461     dAtom->setA( A );
462     dAtom->setJx( ji[0] );
463     dAtom->setJy( ji[1] );
464     dAtom->setJz( ji[2] );
465     }
466     }
467    
468     // calculate the forces
469    
470     for(j = 0; j < nAtoms; j++){
471     atoms[j]->zeroForces();
472     }
473    
474     for(j = 0; j < nSRI; j++){
475     srInteractions[j]->calc_forces();
476     }
477    
478     longRange->calc_forces();
479    
480     for( i=0; i< nAtoms; i++ ){
481    
482     // complete the velocity half step
483    
484     vx = atoms[i]->get_vx() +
485     ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert;
486     vy = atoms[i]->get_vy() +
487     ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert;
488     vz = atoms[i]->get_vz() +
489     ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert;
490    
491     atoms[i]->set_vx( vx );
492     atoms[i]->set_vy( vy );
493     atoms[i]->set_vz( vz );
494    
495 chuckv 134 // vx2 = vx * vx;
496     // vy2 = vy * vy;
497     // vz2 = vz * vz;
498 mmeineke 10
499     if( atoms[i]->isDirectional() ){
500    
501     dAtom = (DirectionalAtom *)atoms[i];
502    
503     // get and convert the torque to body frame
504    
505     Tb[0] = dAtom->getTx();
506     Tb[1] = dAtom->getTy();
507     Tb[2] = dAtom->getTz();
508    
509     dAtom->lab2Body( Tb );
510    
511     // get the angular momentum, and complete the angular momentum
512     // half step
513    
514     ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
515     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
516     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
517    
518     jx2 = ji[0] * ji[0];
519     jy2 = ji[1] * ji[1];
520     jz2 = ji[2] * ji[2];
521    
522     rot_kE += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
523     + (jz2 / dAtom->getIzz());
524    
525     dAtom->setJx( ji[0] );
526     dAtom->setJy( ji[1] );
527     dAtom->setJz( ji[2] );
528     }
529     }
530 mmeineke 25
531     time = tl + 1;
532    
533 mmeineke 10 if( entry_plug->setTemp ){
534 mmeineke 25 if( !(time % vel_n) ) tStats->velocitize();
535 mmeineke 10 }
536 mmeineke 25 if( !(time % sample_n) ) dump_out->writeDump( time * dt );
537     if( !(time % status_n) ) e_out->writeStat( time * dt );
538 mmeineke 10 }
539     }
540    
541     dump_out->writeFinal();
542    
543     delete dump_out;
544     delete e_out;
545     }
546    
547     void Symplectic::rotate( int axes1, int axes2, double angle, double ji[3],
548     double A[3][3] ){
549    
550     int i,j,k;
551     double sinAngle;
552     double cosAngle;
553     double angleSqr;
554     double angleSqrOver4;
555     double top, bottom;
556     double rot[3][3];
557     double tempA[3][3];
558     double tempJ[3];
559    
560     // initialize the tempA
561    
562     for(i=0; i<3; i++){
563     for(j=0; j<3; j++){
564     tempA[i][j] = A[i][j];
565     }
566     }
567    
568     // initialize the tempJ
569    
570     for( i=0; i<3; i++) tempJ[i] = ji[i];
571    
572     // initalize rot as a unit matrix
573    
574     rot[0][0] = 1.0;
575     rot[0][1] = 0.0;
576     rot[0][2] = 0.0;
577    
578     rot[1][0] = 0.0;
579     rot[1][1] = 1.0;
580     rot[1][2] = 0.0;
581    
582     rot[2][0] = 0.0;
583     rot[2][1] = 0.0;
584     rot[2][2] = 1.0;
585    
586     // use a small angle aproximation for sin and cosine
587    
588     angleSqr = angle * angle;
589     angleSqrOver4 = angleSqr / 4.0;
590     top = 1.0 - angleSqrOver4;
591     bottom = 1.0 + angleSqrOver4;
592    
593     cosAngle = top / bottom;
594     sinAngle = angle / bottom;
595    
596     rot[axes1][axes1] = cosAngle;
597     rot[axes2][axes2] = cosAngle;
598    
599     rot[axes1][axes2] = sinAngle;
600     rot[axes2][axes1] = -sinAngle;
601    
602     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
603    
604     for(i=0; i<3; i++){
605     ji[i] = 0.0;
606     for(k=0; k<3; k++){
607     ji[i] += rot[i][k] * tempJ[k];
608     }
609     }
610    
611     // rotate the Rotation matrix acording to:
612     // A[][] = A[][] * transpose(rot[][])
613    
614    
615     // NOte for as yet unknown reason, we are setting the performing the
616     // calculation as:
617     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
618    
619     for(i=0; i<3; i++){
620     for(j=0; j<3; j++){
621     A[j][i] = 0.0;
622     for(k=0; k<3; k++){
623     A[j][i] += tempA[k][i] * rot[j][k];
624     }
625     }
626     }
627     }