ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Thermo.cpp
Revision: 10
Committed: Tue Jul 9 18:40:59 2002 UTC (22 years ago) by mmeineke
Original Path: branches/mmeineke/mdtools/md_code/Thermo.cpp
File size: 5290 byte(s)
Log Message:
everything you need to make libmdtools

File Contents

# User Rev Content
1 mmeineke 10 #include <cmath>
2    
3     #include "Thermo.hpp"
4     #include "SRI.hpp"
5     #include "LRI.hpp"
6     #include "Integrator.hpp"
7    
8    
9     double Thermo::getKinetic(){
10    
11     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
12     double vx2, vy2, vz2;
13     double kinetic, v_sqr;
14     int kl;
15     double jx2, jy2, jz2; // the square of the angular momentums
16    
17     DirectionalAtom *dAtom;
18    
19     int n_atoms;
20     Atom** atoms;
21    
22     n_atoms = entry_plug->n_atoms;
23     atoms = entry_plug->atoms;
24    
25     kinetic = 0.0;
26     for( kl=0; kl < n_atoms; kl++ ){
27    
28     vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
29     vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
30     vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
31    
32     v_sqr = vx2 + vy2 + vz2;
33     kinetic += atoms[kl]->getMass() * v_sqr;
34    
35     if( atoms[kl]->isDirectional() ){
36    
37     dAtom = (DirectionalAtom *)atoms[kl];
38    
39     jx2 = dAtom->getJx() * dAtom->getJx();
40     jy2 = dAtom->getJy() * dAtom->getJy();
41     jz2 = dAtom->getJz() * dAtom->getJz();
42    
43     kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
44     + (jz2 / dAtom->getIzz());
45     }
46     }
47    
48     kinetic = kinetic * 0.5 / e_convert;
49    
50     return kinetic;
51     }
52    
53     double Thermo::getPotential(){
54    
55     double potential;
56     int el, nSRI;
57     SRI** sris;
58    
59     sris = entry_plug->sr_interactions;
60     nSRI = entry_plug->n_SRI;
61    
62     potential = 0.0;
63    
64     potential += entry_plug->longRange->get_potential();;
65    
66     // std::cerr << "long range potential: " << potential << "\n";
67    
68     for( el=0; el<nSRI; el++ ){
69    
70     potential += sris[el]->get_potential();
71     }
72    
73     return potential;
74     }
75    
76     double Thermo::getTotalE(){
77    
78     double total;
79    
80     total = this->getKinetic() + this->getPotential();
81     return total;
82     }
83    
84     double Thermo::getTemperature(){
85    
86     const double kb = 1.88E-3; // boltzman's constant in kcal/(mol K)
87     double temperature;
88    
89     int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
90     - entry_plug->n_constraints - 3;
91    
92     temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
93     return temperature;
94     }
95    
96     double Thermo::getPressure(){
97    
98     const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
99     const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
100     const double conv_A_m = 1.0E-10; //convert A -> m
101    
102     return 0.0;
103     }
104    
105     void Thermo::velocitize() {
106    
107     double x,y;
108     double vx, vy, vz;
109     double jx, jy, jz;
110     int i, vr, vd; // velocity randomizer loop counters
111     double vdrift[3];
112     double mtot = 0.0;
113     double vbar;
114     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
115     double av2;
116     double kebar;
117     int ndf; // number of degrees of freedom
118     int ndfRaw; // the raw number of degrees of freedom
119     int n_atoms;
120     Atom** atoms;
121     DirectionalAtom* dAtom;
122     double temperature;
123     int n_oriented;
124     int n_constraints;
125    
126     atoms = entry_plug->atoms;
127     n_atoms = entry_plug->n_atoms;
128     temperature = entry_plug->target_temp;
129     n_oriented = entry_plug->n_oriented;
130     n_constraints = entry_plug->n_constraints;
131    
132    
133     ndfRaw = 3 * n_atoms + 3 * n_oriented;
134     ndf = ndfRaw - n_constraints - 3;
135     kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
136    
137     for(vr = 0; vr < n_atoms; vr++){
138    
139     // uses equipartition theory to solve for vbar in angstrom/fs
140    
141     av2 = 2.0 * kebar / atoms[vr]->getMass();
142     vbar = sqrt( av2 );
143    
144     // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
145    
146     // picks random velocities from a gaussian distribution
147     // centered on vbar
148    
149     x = drand48();
150     y = drand48();
151     vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
152    
153     x = drand48();
154     y = drand48();
155     vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
156    
157     x = drand48();
158     y = drand48();
159     vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
160    
161     atoms[vr]->set_vx( vx );
162     atoms[vr]->set_vy( vy );
163     atoms[vr]->set_vz( vz );
164     }
165    
166     // Corrects for the center of mass drift.
167     // sums all the momentum and divides by total mass.
168    
169     mtot = 0.0;
170     vdrift[0] = 0.0;
171     vdrift[1] = 0.0;
172     vdrift[2] = 0.0;
173     for(vd = 0; vd < n_atoms; vd++){
174    
175     vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
176     vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
177     vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
178    
179     mtot = mtot + atoms[vd]->getMass();
180     }
181    
182     for (vd = 0; vd < 3; vd++) {
183     vdrift[vd] = vdrift[vd] / mtot;
184     }
185    
186     for(vd = 0; vd < n_atoms; vd++){
187    
188     vx = atoms[vd]->get_vx();
189     vy = atoms[vd]->get_vy();
190     vz = atoms[vd]->get_vz();
191    
192    
193     vx -= vdrift[0];
194     vy -= vdrift[1];
195     vz -= vdrift[2];
196    
197     atoms[vd]->set_vx(vx);
198     atoms[vd]->set_vy(vy);
199     atoms[vd]->set_vz(vz);
200     }
201     if( n_oriented ){
202    
203     for( i=0; i<n_atoms; i++ ){
204    
205     if( atoms[i]->isDirectional() ){
206    
207     dAtom = (DirectionalAtom *)atoms[i];
208    
209     vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
210     x = drand48();
211     y = drand48();
212     jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
213    
214     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
215     x = drand48();
216     y = drand48();
217     jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
218    
219     vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
220     x = drand48();
221     y = drand48();
222     jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
223    
224     dAtom->setJx( jx );
225     dAtom->setJy( jy );
226     dAtom->setJz( jz );
227     }
228     }
229     }
230     }