| 1 |
mmeineke |
10 |
#include <cmath> |
| 2 |
|
|
|
| 3 |
|
|
#include "Thermo.hpp" |
| 4 |
|
|
#include "SRI.hpp" |
| 5 |
|
|
#include "LRI.hpp" |
| 6 |
|
|
#include "Integrator.hpp" |
| 7 |
|
|
|
| 8 |
|
|
|
| 9 |
|
|
double Thermo::getKinetic(){ |
| 10 |
|
|
|
| 11 |
|
|
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
| 12 |
|
|
double vx2, vy2, vz2; |
| 13 |
|
|
double kinetic, v_sqr; |
| 14 |
|
|
int kl; |
| 15 |
|
|
double jx2, jy2, jz2; // the square of the angular momentums |
| 16 |
|
|
|
| 17 |
|
|
DirectionalAtom *dAtom; |
| 18 |
|
|
|
| 19 |
|
|
int n_atoms; |
| 20 |
|
|
Atom** atoms; |
| 21 |
|
|
|
| 22 |
|
|
n_atoms = entry_plug->n_atoms; |
| 23 |
|
|
atoms = entry_plug->atoms; |
| 24 |
|
|
|
| 25 |
|
|
kinetic = 0.0; |
| 26 |
|
|
for( kl=0; kl < n_atoms; kl++ ){ |
| 27 |
|
|
|
| 28 |
|
|
vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); |
| 29 |
|
|
vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy(); |
| 30 |
|
|
vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz(); |
| 31 |
|
|
|
| 32 |
|
|
v_sqr = vx2 + vy2 + vz2; |
| 33 |
|
|
kinetic += atoms[kl]->getMass() * v_sqr; |
| 34 |
|
|
|
| 35 |
|
|
if( atoms[kl]->isDirectional() ){ |
| 36 |
|
|
|
| 37 |
|
|
dAtom = (DirectionalAtom *)atoms[kl]; |
| 38 |
|
|
|
| 39 |
|
|
jx2 = dAtom->getJx() * dAtom->getJx(); |
| 40 |
|
|
jy2 = dAtom->getJy() * dAtom->getJy(); |
| 41 |
|
|
jz2 = dAtom->getJz() * dAtom->getJz(); |
| 42 |
|
|
|
| 43 |
|
|
kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy()) |
| 44 |
|
|
+ (jz2 / dAtom->getIzz()); |
| 45 |
|
|
} |
| 46 |
|
|
} |
| 47 |
|
|
|
| 48 |
|
|
kinetic = kinetic * 0.5 / e_convert; |
| 49 |
|
|
|
| 50 |
|
|
return kinetic; |
| 51 |
|
|
} |
| 52 |
|
|
|
| 53 |
|
|
double Thermo::getPotential(){ |
| 54 |
|
|
|
| 55 |
|
|
double potential; |
| 56 |
|
|
int el, nSRI; |
| 57 |
|
|
SRI** sris; |
| 58 |
|
|
|
| 59 |
|
|
sris = entry_plug->sr_interactions; |
| 60 |
|
|
nSRI = entry_plug->n_SRI; |
| 61 |
|
|
|
| 62 |
|
|
potential = 0.0; |
| 63 |
|
|
|
| 64 |
|
|
potential += entry_plug->longRange->get_potential();; |
| 65 |
|
|
|
| 66 |
|
|
// std::cerr << "long range potential: " << potential << "\n"; |
| 67 |
|
|
|
| 68 |
|
|
for( el=0; el<nSRI; el++ ){ |
| 69 |
|
|
|
| 70 |
|
|
potential += sris[el]->get_potential(); |
| 71 |
|
|
} |
| 72 |
|
|
|
| 73 |
|
|
return potential; |
| 74 |
|
|
} |
| 75 |
|
|
|
| 76 |
|
|
double Thermo::getTotalE(){ |
| 77 |
|
|
|
| 78 |
|
|
double total; |
| 79 |
|
|
|
| 80 |
|
|
total = this->getKinetic() + this->getPotential(); |
| 81 |
|
|
return total; |
| 82 |
|
|
} |
| 83 |
|
|
|
| 84 |
|
|
double Thermo::getTemperature(){ |
| 85 |
|
|
|
| 86 |
|
|
const double kb = 1.88E-3; // boltzman's constant in kcal/(mol K) |
| 87 |
|
|
double temperature; |
| 88 |
|
|
|
| 89 |
|
|
int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
| 90 |
|
|
- entry_plug->n_constraints - 3; |
| 91 |
|
|
|
| 92 |
|
|
temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); |
| 93 |
|
|
return temperature; |
| 94 |
|
|
} |
| 95 |
|
|
|
| 96 |
|
|
double Thermo::getPressure(){ |
| 97 |
|
|
|
| 98 |
|
|
const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm |
| 99 |
|
|
const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa |
| 100 |
|
|
const double conv_A_m = 1.0E-10; //convert A -> m |
| 101 |
|
|
|
| 102 |
|
|
return 0.0; |
| 103 |
|
|
} |
| 104 |
|
|
|
| 105 |
|
|
void Thermo::velocitize() { |
| 106 |
|
|
|
| 107 |
|
|
double x,y; |
| 108 |
|
|
double vx, vy, vz; |
| 109 |
|
|
double jx, jy, jz; |
| 110 |
|
|
int i, vr, vd; // velocity randomizer loop counters |
| 111 |
|
|
double vdrift[3]; |
| 112 |
|
|
double mtot = 0.0; |
| 113 |
|
|
double vbar; |
| 114 |
|
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
| 115 |
|
|
double av2; |
| 116 |
|
|
double kebar; |
| 117 |
|
|
int ndf; // number of degrees of freedom |
| 118 |
|
|
int ndfRaw; // the raw number of degrees of freedom |
| 119 |
|
|
int n_atoms; |
| 120 |
|
|
Atom** atoms; |
| 121 |
|
|
DirectionalAtom* dAtom; |
| 122 |
|
|
double temperature; |
| 123 |
|
|
int n_oriented; |
| 124 |
|
|
int n_constraints; |
| 125 |
|
|
|
| 126 |
|
|
atoms = entry_plug->atoms; |
| 127 |
|
|
n_atoms = entry_plug->n_atoms; |
| 128 |
|
|
temperature = entry_plug->target_temp; |
| 129 |
|
|
n_oriented = entry_plug->n_oriented; |
| 130 |
|
|
n_constraints = entry_plug->n_constraints; |
| 131 |
|
|
|
| 132 |
|
|
|
| 133 |
|
|
ndfRaw = 3 * n_atoms + 3 * n_oriented; |
| 134 |
|
|
ndf = ndfRaw - n_constraints - 3; |
| 135 |
|
|
kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); |
| 136 |
|
|
|
| 137 |
|
|
for(vr = 0; vr < n_atoms; vr++){ |
| 138 |
|
|
|
| 139 |
|
|
// uses equipartition theory to solve for vbar in angstrom/fs |
| 140 |
|
|
|
| 141 |
|
|
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
| 142 |
|
|
vbar = sqrt( av2 ); |
| 143 |
|
|
|
| 144 |
|
|
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
| 145 |
|
|
|
| 146 |
|
|
// picks random velocities from a gaussian distribution |
| 147 |
|
|
// centered on vbar |
| 148 |
|
|
|
| 149 |
|
|
x = drand48(); |
| 150 |
|
|
y = drand48(); |
| 151 |
|
|
vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
| 152 |
|
|
|
| 153 |
|
|
x = drand48(); |
| 154 |
|
|
y = drand48(); |
| 155 |
|
|
vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
| 156 |
|
|
|
| 157 |
|
|
x = drand48(); |
| 158 |
|
|
y = drand48(); |
| 159 |
|
|
vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
| 160 |
|
|
|
| 161 |
|
|
atoms[vr]->set_vx( vx ); |
| 162 |
|
|
atoms[vr]->set_vy( vy ); |
| 163 |
|
|
atoms[vr]->set_vz( vz ); |
| 164 |
|
|
} |
| 165 |
|
|
|
| 166 |
|
|
// Corrects for the center of mass drift. |
| 167 |
|
|
// sums all the momentum and divides by total mass. |
| 168 |
|
|
|
| 169 |
|
|
mtot = 0.0; |
| 170 |
|
|
vdrift[0] = 0.0; |
| 171 |
|
|
vdrift[1] = 0.0; |
| 172 |
|
|
vdrift[2] = 0.0; |
| 173 |
|
|
for(vd = 0; vd < n_atoms; vd++){ |
| 174 |
|
|
|
| 175 |
|
|
vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); |
| 176 |
|
|
vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); |
| 177 |
|
|
vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); |
| 178 |
|
|
|
| 179 |
|
|
mtot = mtot + atoms[vd]->getMass(); |
| 180 |
|
|
} |
| 181 |
|
|
|
| 182 |
|
|
for (vd = 0; vd < 3; vd++) { |
| 183 |
|
|
vdrift[vd] = vdrift[vd] / mtot; |
| 184 |
|
|
} |
| 185 |
|
|
|
| 186 |
|
|
for(vd = 0; vd < n_atoms; vd++){ |
| 187 |
|
|
|
| 188 |
|
|
vx = atoms[vd]->get_vx(); |
| 189 |
|
|
vy = atoms[vd]->get_vy(); |
| 190 |
|
|
vz = atoms[vd]->get_vz(); |
| 191 |
|
|
|
| 192 |
|
|
|
| 193 |
|
|
vx -= vdrift[0]; |
| 194 |
|
|
vy -= vdrift[1]; |
| 195 |
|
|
vz -= vdrift[2]; |
| 196 |
|
|
|
| 197 |
|
|
atoms[vd]->set_vx(vx); |
| 198 |
|
|
atoms[vd]->set_vy(vy); |
| 199 |
|
|
atoms[vd]->set_vz(vz); |
| 200 |
|
|
} |
| 201 |
|
|
if( n_oriented ){ |
| 202 |
|
|
|
| 203 |
|
|
for( i=0; i<n_atoms; i++ ){ |
| 204 |
|
|
|
| 205 |
|
|
if( atoms[i]->isDirectional() ){ |
| 206 |
|
|
|
| 207 |
|
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 208 |
|
|
|
| 209 |
|
|
vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); |
| 210 |
|
|
x = drand48(); |
| 211 |
|
|
y = drand48(); |
| 212 |
|
|
jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
| 213 |
|
|
|
| 214 |
|
|
vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); |
| 215 |
|
|
x = drand48(); |
| 216 |
|
|
y = drand48(); |
| 217 |
|
|
jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
| 218 |
|
|
|
| 219 |
|
|
vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); |
| 220 |
|
|
x = drand48(); |
| 221 |
|
|
y = drand48(); |
| 222 |
|
|
jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
| 223 |
|
|
|
| 224 |
|
|
dAtom->setJx( jx ); |
| 225 |
|
|
dAtom->setJy( jy ); |
| 226 |
|
|
dAtom->setJz( jz ); |
| 227 |
|
|
} |
| 228 |
|
|
} |
| 229 |
|
|
} |
| 230 |
|
|
} |