ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Thermo.cpp
Revision: 218
Committed: Sun Dec 29 19:11:05 2002 UTC (21 years, 6 months ago) by chuckv
File size: 5728 byte(s)
Log Message:
Changed thermo getKinetic and getPotential for MPI.
Added header for SPRNG random number generator class.

File Contents

# User Rev Content
1 mmeineke 10 #include <cmath>
2 chuckv 218 #include <mpi++.h>
3 mmeineke 10
4     #include "Thermo.hpp"
5     #include "SRI.hpp"
6     #include "LRI.hpp"
7     #include "Integrator.hpp"
8    
9    
10     double Thermo::getKinetic(){
11    
12     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
13     double vx2, vy2, vz2;
14     double kinetic, v_sqr;
15     int kl;
16     double jx2, jy2, jz2; // the square of the angular momentums
17    
18     DirectionalAtom *dAtom;
19    
20     int n_atoms;
21 chuckv 218 double kinetic_global;
22 mmeineke 10 Atom** atoms;
23 chuckv 218
24 mmeineke 10
25     n_atoms = entry_plug->n_atoms;
26     atoms = entry_plug->atoms;
27    
28     kinetic = 0.0;
29 chuckv 218 kinetic_global = 0.0;
30 mmeineke 10 for( kl=0; kl < n_atoms; kl++ ){
31    
32     vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
33     vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
34     vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
35    
36     v_sqr = vx2 + vy2 + vz2;
37     kinetic += atoms[kl]->getMass() * v_sqr;
38    
39     if( atoms[kl]->isDirectional() ){
40    
41     dAtom = (DirectionalAtom *)atoms[kl];
42    
43     jx2 = dAtom->getJx() * dAtom->getJx();
44     jy2 = dAtom->getJy() * dAtom->getJy();
45     jz2 = dAtom->getJz() * dAtom->getJz();
46    
47     kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
48     + (jz2 / dAtom->getIzz());
49     }
50     }
51 chuckv 218 #ifdef IS_MPI
52     MPI_COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
53     kinetic = kinetic_global;
54     #endif
55    
56 mmeineke 10 kinetic = kinetic * 0.5 / e_convert;
57    
58     return kinetic;
59     }
60    
61     double Thermo::getPotential(){
62    
63     double potential;
64 chuckv 218 double potential_global;
65 mmeineke 10 int el, nSRI;
66     SRI** sris;
67    
68     sris = entry_plug->sr_interactions;
69     nSRI = entry_plug->n_SRI;
70    
71     potential = 0.0;
72 chuckv 218 potential_global = 0.0;
73 mmeineke 10 potential += entry_plug->longRange->get_potential();;
74    
75     // std::cerr << "long range potential: " << potential << "\n";
76     for( el=0; el<nSRI; el++ ){
77    
78     potential += sris[el]->get_potential();
79     }
80    
81 chuckv 218 // Get total potential for entire system from MPI.
82     #ifdef IS_MPI
83     MPI_COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM);
84     potential = potential_global;
85     #endif
86    
87 mmeineke 10 return potential;
88     }
89    
90     double Thermo::getTotalE(){
91    
92     double total;
93    
94     total = this->getKinetic() + this->getPotential();
95     return total;
96     }
97    
98     double Thermo::getTemperature(){
99    
100 mmeineke 25 const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
101 mmeineke 10 double temperature;
102    
103     int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
104     - entry_plug->n_constraints - 3;
105    
106     temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
107     return temperature;
108     }
109    
110     double Thermo::getPressure(){
111    
112 mmeineke 117 // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
113     // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
114     // const double conv_A_m = 1.0E-10; //convert A -> m
115 mmeineke 10
116     return 0.0;
117     }
118    
119     void Thermo::velocitize() {
120    
121     double x,y;
122     double vx, vy, vz;
123     double jx, jy, jz;
124     int i, vr, vd; // velocity randomizer loop counters
125     double vdrift[3];
126     double mtot = 0.0;
127     double vbar;
128     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
129     double av2;
130     double kebar;
131     int ndf; // number of degrees of freedom
132     int ndfRaw; // the raw number of degrees of freedom
133     int n_atoms;
134     Atom** atoms;
135     DirectionalAtom* dAtom;
136     double temperature;
137     int n_oriented;
138     int n_constraints;
139    
140     atoms = entry_plug->atoms;
141     n_atoms = entry_plug->n_atoms;
142     temperature = entry_plug->target_temp;
143     n_oriented = entry_plug->n_oriented;
144     n_constraints = entry_plug->n_constraints;
145    
146    
147     ndfRaw = 3 * n_atoms + 3 * n_oriented;
148     ndf = ndfRaw - n_constraints - 3;
149     kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
150    
151     for(vr = 0; vr < n_atoms; vr++){
152    
153     // uses equipartition theory to solve for vbar in angstrom/fs
154    
155     av2 = 2.0 * kebar / atoms[vr]->getMass();
156     vbar = sqrt( av2 );
157    
158     // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
159    
160     // picks random velocities from a gaussian distribution
161     // centered on vbar
162    
163     x = drand48();
164     y = drand48();
165     vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
166    
167     x = drand48();
168     y = drand48();
169     vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
170    
171     x = drand48();
172     y = drand48();
173     vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
174    
175     atoms[vr]->set_vx( vx );
176     atoms[vr]->set_vy( vy );
177     atoms[vr]->set_vz( vz );
178     }
179    
180     // Corrects for the center of mass drift.
181     // sums all the momentum and divides by total mass.
182    
183     mtot = 0.0;
184     vdrift[0] = 0.0;
185     vdrift[1] = 0.0;
186     vdrift[2] = 0.0;
187     for(vd = 0; vd < n_atoms; vd++){
188    
189     vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
190     vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
191     vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
192    
193     mtot = mtot + atoms[vd]->getMass();
194     }
195    
196     for (vd = 0; vd < 3; vd++) {
197     vdrift[vd] = vdrift[vd] / mtot;
198     }
199    
200     for(vd = 0; vd < n_atoms; vd++){
201    
202     vx = atoms[vd]->get_vx();
203     vy = atoms[vd]->get_vy();
204     vz = atoms[vd]->get_vz();
205    
206    
207     vx -= vdrift[0];
208     vy -= vdrift[1];
209     vz -= vdrift[2];
210    
211     atoms[vd]->set_vx(vx);
212     atoms[vd]->set_vy(vy);
213     atoms[vd]->set_vz(vz);
214     }
215     if( n_oriented ){
216    
217     for( i=0; i<n_atoms; i++ ){
218    
219     if( atoms[i]->isDirectional() ){
220    
221     dAtom = (DirectionalAtom *)atoms[i];
222    
223     vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
224     x = drand48();
225     y = drand48();
226     jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
227    
228     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
229     x = drand48();
230     y = drand48();
231     jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
232    
233     vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
234     x = drand48();
235     y = drand48();
236     jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
237    
238     dAtom->setJx( jx );
239     dAtom->setJy( jy );
240     dAtom->setJz( jz );
241     }
242     }
243     }
244     }