ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Thermo.cpp
Revision: 253
Committed: Thu Jan 30 15:20:21 2003 UTC (21 years, 5 months ago) by chuckv
File size: 7307 byte(s)
Log Message:
Added a generic util code directory and moved Linux_ifc_machdep to it.
MPI changes to compile MPI modules.

File Contents

# User Rev Content
1 mmeineke 10 #include <cmath>
2 chuckv 252 #include <iostream>
3 chuckv 253 using namespace std;
4 chuckv 249
5     #ifdef IS_MPI
6 chuckv 218 #include <mpi++.h>
7 chuckv 249 #endif //is_mpi
8 mmeineke 10
9     #include "Thermo.hpp"
10     #include "SRI.hpp"
11     #include "LRI.hpp"
12     #include "Integrator.hpp"
13    
14 chuckv 223 #define BASE_SEED 123456789
15 mmeineke 10
16 chuckv 223 Thermo::Thermo( SimInfo* the_entry_plug ) {
17     entry_plug = the_entry_plug;
18 chuckv 249 int baseSeed = BASE_SEED;
19 chuckv 253
20     cerr << "creating thermo stream\n";
21 chuckv 223 gaussStream = new gaussianSPRNG( baseSeed );
22 chuckv 253 cerr << "created thermo stream\n";
23 chuckv 223 }
24    
25     Thermo::~Thermo(){
26     delete gaussStream;
27     }
28    
29 mmeineke 10 double Thermo::getKinetic(){
30    
31     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
32     double vx2, vy2, vz2;
33     double kinetic, v_sqr;
34     int kl;
35     double jx2, jy2, jz2; // the square of the angular momentums
36    
37     DirectionalAtom *dAtom;
38    
39     int n_atoms;
40 chuckv 218 double kinetic_global;
41 mmeineke 10 Atom** atoms;
42 chuckv 218
43 mmeineke 10
44     n_atoms = entry_plug->n_atoms;
45     atoms = entry_plug->atoms;
46    
47     kinetic = 0.0;
48 chuckv 218 kinetic_global = 0.0;
49 mmeineke 10 for( kl=0; kl < n_atoms; kl++ ){
50    
51     vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
52     vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
53     vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
54    
55     v_sqr = vx2 + vy2 + vz2;
56     kinetic += atoms[kl]->getMass() * v_sqr;
57    
58     if( atoms[kl]->isDirectional() ){
59    
60     dAtom = (DirectionalAtom *)atoms[kl];
61    
62     jx2 = dAtom->getJx() * dAtom->getJx();
63     jy2 = dAtom->getJy() * dAtom->getJy();
64     jz2 = dAtom->getJz() * dAtom->getJz();
65    
66     kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
67     + (jz2 / dAtom->getIzz());
68     }
69     }
70 chuckv 218 #ifdef IS_MPI
71     MPI_COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
72     kinetic = kinetic_global;
73 chuckv 249 #endif //is_mpi
74 chuckv 218
75 mmeineke 10 kinetic = kinetic * 0.5 / e_convert;
76    
77     return kinetic;
78     }
79    
80     double Thermo::getPotential(){
81    
82     double potential;
83 chuckv 218 double potential_global;
84 mmeineke 10 int el, nSRI;
85     SRI** sris;
86    
87     sris = entry_plug->sr_interactions;
88     nSRI = entry_plug->n_SRI;
89    
90     potential = 0.0;
91 chuckv 218 potential_global = 0.0;
92 chuckv 249 potential += entry_plug->lrPot;
93 mmeineke 10
94     // std::cerr << "long range potential: " << potential << "\n";
95     for( el=0; el<nSRI; el++ ){
96    
97     potential += sris[el]->get_potential();
98     }
99    
100 chuckv 218 // Get total potential for entire system from MPI.
101     #ifdef IS_MPI
102     MPI_COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM);
103     potential = potential_global;
104 chuckv 249 #endif // is_mpi
105 chuckv 218
106 mmeineke 10 return potential;
107     }
108    
109     double Thermo::getTotalE(){
110    
111     double total;
112    
113     total = this->getKinetic() + this->getPotential();
114     return total;
115     }
116    
117     double Thermo::getTemperature(){
118    
119 mmeineke 25 const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
120 mmeineke 10 double temperature;
121    
122     int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
123     - entry_plug->n_constraints - 3;
124    
125     temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
126     return temperature;
127     }
128    
129     double Thermo::getPressure(){
130    
131 mmeineke 117 // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
132     // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
133     // const double conv_A_m = 1.0E-10; //convert A -> m
134 mmeineke 10
135     return 0.0;
136     }
137    
138     void Thermo::velocitize() {
139    
140     double x,y;
141     double vx, vy, vz;
142     double jx, jy, jz;
143     int i, vr, vd; // velocity randomizer loop counters
144     double vdrift[3];
145     double mtot = 0.0;
146     double vbar;
147     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
148     double av2;
149     double kebar;
150     int ndf; // number of degrees of freedom
151     int ndfRaw; // the raw number of degrees of freedom
152     int n_atoms;
153     Atom** atoms;
154     DirectionalAtom* dAtom;
155     double temperature;
156     int n_oriented;
157     int n_constraints;
158    
159     atoms = entry_plug->atoms;
160     n_atoms = entry_plug->n_atoms;
161     temperature = entry_plug->target_temp;
162     n_oriented = entry_plug->n_oriented;
163     n_constraints = entry_plug->n_constraints;
164    
165    
166     ndfRaw = 3 * n_atoms + 3 * n_oriented;
167     ndf = ndfRaw - n_constraints - 3;
168     kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
169    
170     for(vr = 0; vr < n_atoms; vr++){
171    
172     // uses equipartition theory to solve for vbar in angstrom/fs
173    
174     av2 = 2.0 * kebar / atoms[vr]->getMass();
175     vbar = sqrt( av2 );
176    
177     // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
178    
179     // picks random velocities from a gaussian distribution
180     // centered on vbar
181 chuckv 221 #ifndef USE_SPRNG
182     /* If we are using mpi, we need to use the SPRNG random
183     generator. The non drand48 generator will just repeat
184     the same numbers for every node creating a non-gaussian
185     distribution for the simulation. drand48 is fine for the
186     single processor version of the code, but SPRNG should
187     still be preferred for consistency.
188     */
189 chuckv 249
190 chuckv 221 #ifdef IS_MPI
191     #error "SPRNG random number generator must be used for MPI"
192     #else
193     #warning "Using drand48 for random number generation"
194 chuckv 249 #endif // is_mpi
195    
196 mmeineke 10 x = drand48();
197     y = drand48();
198     vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
199    
200     x = drand48();
201     y = drand48();
202     vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
203    
204     x = drand48();
205     y = drand48();
206     vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
207 chuckv 253
208 chuckv 249 #endif // use_spring
209 chuckv 221
210     #ifdef USE_SPRNG
211 chuckv 223 vx = vbar * gaussStream->getGaussian();
212     vy = vbar * gaussStream->getGaussian();
213     vz = vbar * gaussStream->getGaussian();
214 chuckv 249 #endif // use_spring
215 chuckv 221
216 mmeineke 10 atoms[vr]->set_vx( vx );
217     atoms[vr]->set_vy( vy );
218     atoms[vr]->set_vz( vz );
219     }
220    
221     // Corrects for the center of mass drift.
222     // sums all the momentum and divides by total mass.
223    
224     mtot = 0.0;
225     vdrift[0] = 0.0;
226     vdrift[1] = 0.0;
227     vdrift[2] = 0.0;
228     for(vd = 0; vd < n_atoms; vd++){
229    
230     vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
231     vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
232     vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
233    
234     mtot = mtot + atoms[vd]->getMass();
235     }
236    
237     for (vd = 0; vd < 3; vd++) {
238     vdrift[vd] = vdrift[vd] / mtot;
239     }
240    
241     for(vd = 0; vd < n_atoms; vd++){
242    
243     vx = atoms[vd]->get_vx();
244     vy = atoms[vd]->get_vy();
245     vz = atoms[vd]->get_vz();
246    
247    
248     vx -= vdrift[0];
249     vy -= vdrift[1];
250     vz -= vdrift[2];
251    
252     atoms[vd]->set_vx(vx);
253     atoms[vd]->set_vy(vy);
254     atoms[vd]->set_vz(vz);
255     }
256     if( n_oriented ){
257    
258     for( i=0; i<n_atoms; i++ ){
259    
260     if( atoms[i]->isDirectional() ){
261    
262     dAtom = (DirectionalAtom *)atoms[i];
263 chuckv 249
264     #ifndef USE_SPRNG
265    
266 chuckv 221 #ifdef IS_MPI
267     #error "SPRNG random number generator must be used for MPI"
268 chuckv 249 #else // is_mpi
269 chuckv 221 #warning "Using drand48 for random number generation"
270 chuckv 249 #endif // is_MPI
271 mmeineke 10
272     vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
273     x = drand48();
274     y = drand48();
275     jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
276    
277     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
278     x = drand48();
279     y = drand48();
280     jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
281    
282     vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
283     x = drand48();
284     y = drand48();
285     jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
286 chuckv 249
287     #else //use_sprng
288    
289 chuckv 221 vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
290 chuckv 223 jx = vbar * gaussStream->getGaussian();
291 chuckv 221
292     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
293 chuckv 223 jy = vbar * gaussStream->getGaussian();
294 chuckv 221
295     vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
296 chuckv 223 jz = vbar * gaussStream->getGaussian();
297 chuckv 249 #endif //use_sprng
298 mmeineke 10
299     dAtom->setJx( jx );
300     dAtom->setJy( jy );
301     dAtom->setJz( jz );
302     }
303     }
304     }
305     }