ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Thermo.cpp
Revision: 254
Committed: Thu Jan 30 20:03:37 2003 UTC (21 years, 5 months ago) by chuckv
File size: 7334 byte(s)
Log Message:
Bug fixes for mpi version of code

File Contents

# User Rev Content
1 mmeineke 10 #include <cmath>
2 chuckv 252 #include <iostream>
3 chuckv 253 using namespace std;
4 chuckv 249
5     #ifdef IS_MPI
6 chuckv 254 #include <mpi.h>
7 chuckv 218 #include <mpi++.h>
8 chuckv 249 #endif //is_mpi
9 mmeineke 10
10     #include "Thermo.hpp"
11     #include "SRI.hpp"
12     #include "LRI.hpp"
13     #include "Integrator.hpp"
14    
15 chuckv 223 #define BASE_SEED 123456789
16 mmeineke 10
17 chuckv 223 Thermo::Thermo( SimInfo* the_entry_plug ) {
18     entry_plug = the_entry_plug;
19 chuckv 249 int baseSeed = BASE_SEED;
20 chuckv 253
21     cerr << "creating thermo stream\n";
22 chuckv 223 gaussStream = new gaussianSPRNG( baseSeed );
23 chuckv 253 cerr << "created thermo stream\n";
24 chuckv 223 }
25    
26     Thermo::~Thermo(){
27     delete gaussStream;
28     }
29    
30 mmeineke 10 double Thermo::getKinetic(){
31    
32     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
33     double vx2, vy2, vz2;
34     double kinetic, v_sqr;
35     int kl;
36     double jx2, jy2, jz2; // the square of the angular momentums
37    
38     DirectionalAtom *dAtom;
39    
40     int n_atoms;
41 chuckv 218 double kinetic_global;
42 mmeineke 10 Atom** atoms;
43 chuckv 218
44 mmeineke 10
45     n_atoms = entry_plug->n_atoms;
46     atoms = entry_plug->atoms;
47    
48     kinetic = 0.0;
49 chuckv 218 kinetic_global = 0.0;
50 mmeineke 10 for( kl=0; kl < n_atoms; kl++ ){
51    
52     vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
53     vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
54     vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
55    
56     v_sqr = vx2 + vy2 + vz2;
57     kinetic += atoms[kl]->getMass() * v_sqr;
58    
59     if( atoms[kl]->isDirectional() ){
60    
61     dAtom = (DirectionalAtom *)atoms[kl];
62    
63     jx2 = dAtom->getJx() * dAtom->getJx();
64     jy2 = dAtom->getJy() * dAtom->getJy();
65     jz2 = dAtom->getJz() * dAtom->getJz();
66    
67     kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
68     + (jz2 / dAtom->getIzz());
69     }
70     }
71 chuckv 218 #ifdef IS_MPI
72 chuckv 254 MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
73 chuckv 218 kinetic = kinetic_global;
74 chuckv 249 #endif //is_mpi
75 chuckv 218
76 mmeineke 10 kinetic = kinetic * 0.5 / e_convert;
77    
78     return kinetic;
79     }
80    
81     double Thermo::getPotential(){
82    
83     double potential;
84 chuckv 218 double potential_global;
85 mmeineke 10 int el, nSRI;
86     SRI** sris;
87    
88     sris = entry_plug->sr_interactions;
89     nSRI = entry_plug->n_SRI;
90    
91     potential = 0.0;
92 chuckv 218 potential_global = 0.0;
93 chuckv 249 potential += entry_plug->lrPot;
94 mmeineke 10
95     // std::cerr << "long range potential: " << potential << "\n";
96     for( el=0; el<nSRI; el++ ){
97    
98     potential += sris[el]->get_potential();
99     }
100    
101 chuckv 218 // Get total potential for entire system from MPI.
102     #ifdef IS_MPI
103 chuckv 254 MPI::COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM);
104 chuckv 218 potential = potential_global;
105 chuckv 249 #endif // is_mpi
106 chuckv 218
107 mmeineke 10 return potential;
108     }
109    
110     double Thermo::getTotalE(){
111    
112     double total;
113    
114     total = this->getKinetic() + this->getPotential();
115     return total;
116     }
117    
118     double Thermo::getTemperature(){
119    
120 mmeineke 25 const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
121 mmeineke 10 double temperature;
122    
123     int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
124     - entry_plug->n_constraints - 3;
125    
126     temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
127     return temperature;
128     }
129    
130     double Thermo::getPressure(){
131    
132 mmeineke 117 // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
133     // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
134     // const double conv_A_m = 1.0E-10; //convert A -> m
135 mmeineke 10
136     return 0.0;
137     }
138    
139     void Thermo::velocitize() {
140    
141     double x,y;
142     double vx, vy, vz;
143     double jx, jy, jz;
144     int i, vr, vd; // velocity randomizer loop counters
145     double vdrift[3];
146     double mtot = 0.0;
147     double vbar;
148     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
149     double av2;
150     double kebar;
151     int ndf; // number of degrees of freedom
152     int ndfRaw; // the raw number of degrees of freedom
153     int n_atoms;
154     Atom** atoms;
155     DirectionalAtom* dAtom;
156     double temperature;
157     int n_oriented;
158     int n_constraints;
159    
160     atoms = entry_plug->atoms;
161     n_atoms = entry_plug->n_atoms;
162     temperature = entry_plug->target_temp;
163     n_oriented = entry_plug->n_oriented;
164     n_constraints = entry_plug->n_constraints;
165    
166    
167     ndfRaw = 3 * n_atoms + 3 * n_oriented;
168     ndf = ndfRaw - n_constraints - 3;
169     kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
170    
171     for(vr = 0; vr < n_atoms; vr++){
172    
173     // uses equipartition theory to solve for vbar in angstrom/fs
174    
175     av2 = 2.0 * kebar / atoms[vr]->getMass();
176     vbar = sqrt( av2 );
177    
178     // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
179    
180     // picks random velocities from a gaussian distribution
181     // centered on vbar
182 chuckv 221 #ifndef USE_SPRNG
183     /* If we are using mpi, we need to use the SPRNG random
184     generator. The non drand48 generator will just repeat
185     the same numbers for every node creating a non-gaussian
186     distribution for the simulation. drand48 is fine for the
187     single processor version of the code, but SPRNG should
188     still be preferred for consistency.
189     */
190 chuckv 249
191 chuckv 221 #ifdef IS_MPI
192     #error "SPRNG random number generator must be used for MPI"
193     #else
194 chuckv 254 // warning "Using drand48 for random number generation"
195 chuckv 249 #endif // is_mpi
196    
197 mmeineke 10 x = drand48();
198     y = drand48();
199     vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
200    
201     x = drand48();
202     y = drand48();
203     vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
204    
205     x = drand48();
206     y = drand48();
207     vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
208 chuckv 253
209 chuckv 249 #endif // use_spring
210 chuckv 221
211     #ifdef USE_SPRNG
212 chuckv 223 vx = vbar * gaussStream->getGaussian();
213     vy = vbar * gaussStream->getGaussian();
214     vz = vbar * gaussStream->getGaussian();
215 chuckv 249 #endif // use_spring
216 chuckv 221
217 mmeineke 10 atoms[vr]->set_vx( vx );
218     atoms[vr]->set_vy( vy );
219     atoms[vr]->set_vz( vz );
220     }
221    
222     // Corrects for the center of mass drift.
223     // sums all the momentum and divides by total mass.
224    
225     mtot = 0.0;
226     vdrift[0] = 0.0;
227     vdrift[1] = 0.0;
228     vdrift[2] = 0.0;
229     for(vd = 0; vd < n_atoms; vd++){
230    
231     vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
232     vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
233     vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
234    
235     mtot = mtot + atoms[vd]->getMass();
236     }
237    
238     for (vd = 0; vd < 3; vd++) {
239     vdrift[vd] = vdrift[vd] / mtot;
240     }
241    
242     for(vd = 0; vd < n_atoms; vd++){
243    
244     vx = atoms[vd]->get_vx();
245     vy = atoms[vd]->get_vy();
246     vz = atoms[vd]->get_vz();
247    
248    
249     vx -= vdrift[0];
250     vy -= vdrift[1];
251     vz -= vdrift[2];
252    
253     atoms[vd]->set_vx(vx);
254     atoms[vd]->set_vy(vy);
255     atoms[vd]->set_vz(vz);
256     }
257     if( n_oriented ){
258    
259     for( i=0; i<n_atoms; i++ ){
260    
261     if( atoms[i]->isDirectional() ){
262    
263     dAtom = (DirectionalAtom *)atoms[i];
264 chuckv 249
265     #ifndef USE_SPRNG
266    
267 chuckv 221 #ifdef IS_MPI
268     #error "SPRNG random number generator must be used for MPI"
269 chuckv 249 #else // is_mpi
270 chuckv 254 //warning "Using drand48 for random number generation"
271 chuckv 249 #endif // is_MPI
272 mmeineke 10
273     vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
274     x = drand48();
275     y = drand48();
276     jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
277    
278     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
279     x = drand48();
280     y = drand48();
281     jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
282    
283     vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
284     x = drand48();
285     y = drand48();
286     jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
287 chuckv 249
288     #else //use_sprng
289    
290 chuckv 221 vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
291 chuckv 223 jx = vbar * gaussStream->getGaussian();
292 chuckv 221
293     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
294 chuckv 223 jy = vbar * gaussStream->getGaussian();
295 chuckv 221
296     vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
297 chuckv 223 jz = vbar * gaussStream->getGaussian();
298 chuckv 249 #endif //use_sprng
299 mmeineke 10
300     dAtom->setJx( jx );
301     dAtom->setJy( jy );
302     dAtom->setJz( jz );
303     }
304     }
305     }
306     }