ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Thermo.cpp
Revision: 261
Committed: Mon Feb 3 21:15:59 2003 UTC (21 years, 5 months ago) by chuckv
File size: 7259 byte(s)
Log Message:
We have working code today... MPI bug fixes to DumpWriter.

File Contents

# User Rev Content
1 mmeineke 10 #include <cmath>
2 chuckv 252 #include <iostream>
3 chuckv 253 using namespace std;
4 chuckv 249
5     #ifdef IS_MPI
6 chuckv 254 #include <mpi.h>
7 chuckv 218 #include <mpi++.h>
8 chuckv 249 #endif //is_mpi
9 mmeineke 10
10     #include "Thermo.hpp"
11     #include "SRI.hpp"
12     #include "LRI.hpp"
13     #include "Integrator.hpp"
14    
15 chuckv 223 #define BASE_SEED 123456789
16 mmeineke 10
17 chuckv 223 Thermo::Thermo( SimInfo* the_entry_plug ) {
18     entry_plug = the_entry_plug;
19 chuckv 249 int baseSeed = BASE_SEED;
20 chuckv 253
21 chuckv 223 gaussStream = new gaussianSPRNG( baseSeed );
22     }
23    
24     Thermo::~Thermo(){
25     delete gaussStream;
26     }
27    
28 mmeineke 10 double Thermo::getKinetic(){
29    
30     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
31     double vx2, vy2, vz2;
32     double kinetic, v_sqr;
33     int kl;
34     double jx2, jy2, jz2; // the square of the angular momentums
35    
36     DirectionalAtom *dAtom;
37    
38     int n_atoms;
39 chuckv 218 double kinetic_global;
40 mmeineke 10 Atom** atoms;
41 chuckv 218
42 mmeineke 10
43     n_atoms = entry_plug->n_atoms;
44     atoms = entry_plug->atoms;
45    
46     kinetic = 0.0;
47 chuckv 218 kinetic_global = 0.0;
48 mmeineke 10 for( kl=0; kl < n_atoms; kl++ ){
49    
50     vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
51     vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
52     vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
53    
54     v_sqr = vx2 + vy2 + vz2;
55     kinetic += atoms[kl]->getMass() * v_sqr;
56    
57     if( atoms[kl]->isDirectional() ){
58    
59     dAtom = (DirectionalAtom *)atoms[kl];
60    
61     jx2 = dAtom->getJx() * dAtom->getJx();
62     jy2 = dAtom->getJy() * dAtom->getJy();
63     jz2 = dAtom->getJz() * dAtom->getJz();
64    
65     kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
66     + (jz2 / dAtom->getIzz());
67     }
68     }
69 chuckv 218 #ifdef IS_MPI
70 chuckv 254 MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
71 chuckv 218 kinetic = kinetic_global;
72 chuckv 249 #endif //is_mpi
73 chuckv 218
74 mmeineke 10 kinetic = kinetic * 0.5 / e_convert;
75    
76     return kinetic;
77     }
78    
79     double Thermo::getPotential(){
80    
81     double potential;
82 chuckv 218 double potential_global;
83 mmeineke 10 int el, nSRI;
84     SRI** sris;
85    
86     sris = entry_plug->sr_interactions;
87     nSRI = entry_plug->n_SRI;
88    
89     potential = 0.0;
90 chuckv 218 potential_global = 0.0;
91 chuckv 249 potential += entry_plug->lrPot;
92 mmeineke 10
93     // std::cerr << "long range potential: " << potential << "\n";
94     for( el=0; el<nSRI; el++ ){
95    
96     potential += sris[el]->get_potential();
97     }
98    
99 chuckv 218 // Get total potential for entire system from MPI.
100     #ifdef IS_MPI
101 chuckv 254 MPI::COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM);
102 chuckv 218 potential = potential_global;
103 chuckv 249 #endif // is_mpi
104 chuckv 218
105 mmeineke 10 return potential;
106     }
107    
108     double Thermo::getTotalE(){
109    
110     double total;
111    
112     total = this->getKinetic() + this->getPotential();
113     return total;
114     }
115    
116     double Thermo::getTemperature(){
117    
118 mmeineke 25 const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
119 mmeineke 10 double temperature;
120    
121     int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
122     - entry_plug->n_constraints - 3;
123    
124     temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
125     return temperature;
126     }
127    
128     double Thermo::getPressure(){
129    
130 mmeineke 117 // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
131     // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
132     // const double conv_A_m = 1.0E-10; //convert A -> m
133 mmeineke 10
134     return 0.0;
135     }
136    
137     void Thermo::velocitize() {
138    
139     double x,y;
140     double vx, vy, vz;
141     double jx, jy, jz;
142     int i, vr, vd; // velocity randomizer loop counters
143     double vdrift[3];
144     double mtot = 0.0;
145     double vbar;
146     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
147     double av2;
148     double kebar;
149     int ndf; // number of degrees of freedom
150     int ndfRaw; // the raw number of degrees of freedom
151     int n_atoms;
152     Atom** atoms;
153     DirectionalAtom* dAtom;
154     double temperature;
155     int n_oriented;
156     int n_constraints;
157    
158     atoms = entry_plug->atoms;
159     n_atoms = entry_plug->n_atoms;
160     temperature = entry_plug->target_temp;
161     n_oriented = entry_plug->n_oriented;
162     n_constraints = entry_plug->n_constraints;
163    
164    
165     ndfRaw = 3 * n_atoms + 3 * n_oriented;
166     ndf = ndfRaw - n_constraints - 3;
167     kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
168    
169     for(vr = 0; vr < n_atoms; vr++){
170    
171     // uses equipartition theory to solve for vbar in angstrom/fs
172    
173     av2 = 2.0 * kebar / atoms[vr]->getMass();
174     vbar = sqrt( av2 );
175    
176     // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
177    
178     // picks random velocities from a gaussian distribution
179     // centered on vbar
180 chuckv 221 #ifndef USE_SPRNG
181     /* If we are using mpi, we need to use the SPRNG random
182     generator. The non drand48 generator will just repeat
183     the same numbers for every node creating a non-gaussian
184     distribution for the simulation. drand48 is fine for the
185     single processor version of the code, but SPRNG should
186     still be preferred for consistency.
187     */
188 chuckv 249
189 chuckv 221 #ifdef IS_MPI
190     #error "SPRNG random number generator must be used for MPI"
191     #else
192 chuckv 254 // warning "Using drand48 for random number generation"
193 chuckv 249 #endif // is_mpi
194    
195 mmeineke 10 x = drand48();
196     y = drand48();
197     vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
198    
199     x = drand48();
200     y = drand48();
201     vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
202    
203     x = drand48();
204     y = drand48();
205     vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
206 chuckv 253
207 chuckv 249 #endif // use_spring
208 chuckv 221
209     #ifdef USE_SPRNG
210 chuckv 223 vx = vbar * gaussStream->getGaussian();
211     vy = vbar * gaussStream->getGaussian();
212     vz = vbar * gaussStream->getGaussian();
213 chuckv 249 #endif // use_spring
214 chuckv 221
215 mmeineke 10 atoms[vr]->set_vx( vx );
216     atoms[vr]->set_vy( vy );
217     atoms[vr]->set_vz( vz );
218     }
219    
220     // Corrects for the center of mass drift.
221     // sums all the momentum and divides by total mass.
222    
223     mtot = 0.0;
224     vdrift[0] = 0.0;
225     vdrift[1] = 0.0;
226     vdrift[2] = 0.0;
227     for(vd = 0; vd < n_atoms; vd++){
228    
229     vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
230     vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
231     vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
232    
233     mtot = mtot + atoms[vd]->getMass();
234     }
235    
236     for (vd = 0; vd < 3; vd++) {
237     vdrift[vd] = vdrift[vd] / mtot;
238     }
239    
240     for(vd = 0; vd < n_atoms; vd++){
241    
242     vx = atoms[vd]->get_vx();
243     vy = atoms[vd]->get_vy();
244     vz = atoms[vd]->get_vz();
245    
246    
247     vx -= vdrift[0];
248     vy -= vdrift[1];
249     vz -= vdrift[2];
250    
251     atoms[vd]->set_vx(vx);
252     atoms[vd]->set_vy(vy);
253     atoms[vd]->set_vz(vz);
254     }
255     if( n_oriented ){
256    
257     for( i=0; i<n_atoms; i++ ){
258    
259     if( atoms[i]->isDirectional() ){
260    
261     dAtom = (DirectionalAtom *)atoms[i];
262 chuckv 249
263     #ifndef USE_SPRNG
264    
265 chuckv 221 #ifdef IS_MPI
266     #error "SPRNG random number generator must be used for MPI"
267 chuckv 249 #else // is_mpi
268 chuckv 254 //warning "Using drand48 for random number generation"
269 chuckv 249 #endif // is_MPI
270 mmeineke 10
271     vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
272     x = drand48();
273     y = drand48();
274     jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
275    
276     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
277     x = drand48();
278     y = drand48();
279     jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
280    
281     vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
282     x = drand48();
283     y = drand48();
284     jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
285 chuckv 249
286     #else //use_sprng
287    
288 chuckv 221 vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
289 chuckv 223 jx = vbar * gaussStream->getGaussian();
290 chuckv 221
291     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
292 chuckv 223 jy = vbar * gaussStream->getGaussian();
293 chuckv 221
294     vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
295 chuckv 223 jz = vbar * gaussStream->getGaussian();
296 chuckv 249 #endif //use_sprng
297 mmeineke 10
298     dAtom->setJx( jx );
299     dAtom->setJy( jy );
300     dAtom->setJz( jz );
301     }
302     }
303     }
304     }