| 1 |
|
#include <cmath> |
| 2 |
+ |
#include <iostream> |
| 3 |
+ |
|
| 4 |
+ |
|
| 5 |
+ |
#ifdef IS_MPI |
| 6 |
|
#include <mpi++.h> |
| 7 |
+ |
#endif //is_mpi |
| 8 |
|
|
| 9 |
|
#include "Thermo.hpp" |
| 10 |
|
#include "SRI.hpp" |
| 11 |
|
#include "LRI.hpp" |
| 12 |
|
#include "Integrator.hpp" |
| 13 |
|
|
| 14 |
+ |
#define BASE_SEED 123456789 |
| 15 |
|
|
| 16 |
+ |
Thermo::Thermo( SimInfo* the_entry_plug ) { |
| 17 |
+ |
entry_plug = the_entry_plug; |
| 18 |
+ |
int baseSeed = BASE_SEED; |
| 19 |
+ |
gaussStream = new gaussianSPRNG( baseSeed ); |
| 20 |
+ |
} |
| 21 |
+ |
|
| 22 |
+ |
Thermo::~Thermo(){ |
| 23 |
+ |
delete gaussStream; |
| 24 |
+ |
} |
| 25 |
+ |
|
| 26 |
|
double Thermo::getKinetic(){ |
| 27 |
|
|
| 28 |
|
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
| 67 |
|
#ifdef IS_MPI |
| 68 |
|
MPI_COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM); |
| 69 |
|
kinetic = kinetic_global; |
| 70 |
< |
#endif |
| 70 |
> |
#endif //is_mpi |
| 71 |
|
|
| 72 |
|
kinetic = kinetic * 0.5 / e_convert; |
| 73 |
|
|
| 86 |
|
|
| 87 |
|
potential = 0.0; |
| 88 |
|
potential_global = 0.0; |
| 89 |
< |
potential += entry_plug->longRange->get_potential();; |
| 89 |
> |
potential += entry_plug->lrPot; |
| 90 |
|
|
| 91 |
|
// std::cerr << "long range potential: " << potential << "\n"; |
| 92 |
|
for( el=0; el<nSRI; el++ ){ |
| 98 |
|
#ifdef IS_MPI |
| 99 |
|
MPI_COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM); |
| 100 |
|
potential = potential_global; |
| 101 |
< |
#endif |
| 101 |
> |
#endif // is_mpi |
| 102 |
|
|
| 103 |
|
return potential; |
| 104 |
|
} |
| 164 |
|
ndf = ndfRaw - n_constraints - 3; |
| 165 |
|
kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); |
| 166 |
|
|
| 167 |
+ |
printf("Entered Velocitize\n"); |
| 168 |
|
for(vr = 0; vr < n_atoms; vr++){ |
| 169 |
|
|
| 170 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
| 176 |
|
|
| 177 |
|
// picks random velocities from a gaussian distribution |
| 178 |
|
// centered on vbar |
| 179 |
< |
|
| 179 |
> |
#ifndef USE_SPRNG |
| 180 |
> |
/* If we are using mpi, we need to use the SPRNG random |
| 181 |
> |
generator. The non drand48 generator will just repeat |
| 182 |
> |
the same numbers for every node creating a non-gaussian |
| 183 |
> |
distribution for the simulation. drand48 is fine for the |
| 184 |
> |
single processor version of the code, but SPRNG should |
| 185 |
> |
still be preferred for consistency. |
| 186 |
> |
*/ |
| 187 |
> |
|
| 188 |
> |
#ifdef IS_MPI |
| 189 |
> |
#error "SPRNG random number generator must be used for MPI" |
| 190 |
> |
#else |
| 191 |
> |
#warning "Using drand48 for random number generation" |
| 192 |
> |
#endif // is_mpi |
| 193 |
> |
|
| 194 |
|
x = drand48(); |
| 195 |
|
y = drand48(); |
| 196 |
|
vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
| 202 |
|
x = drand48(); |
| 203 |
|
y = drand48(); |
| 204 |
|
vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
| 205 |
< |
|
| 205 |
> |
printf("Setting new velocities vx: %f\n",vx); |
| 206 |
> |
#endif // use_spring |
| 207 |
> |
|
| 208 |
> |
#ifdef USE_SPRNG |
| 209 |
> |
vx = vbar * gaussStream->getGaussian(); |
| 210 |
> |
vy = vbar * gaussStream->getGaussian(); |
| 211 |
> |
vz = vbar * gaussStream->getGaussian(); |
| 212 |
> |
#endif // use_spring |
| 213 |
> |
|
| 214 |
|
atoms[vr]->set_vx( vx ); |
| 215 |
|
atoms[vr]->set_vy( vy ); |
| 216 |
|
atoms[vr]->set_vz( vz ); |
| 258 |
|
if( atoms[i]->isDirectional() ){ |
| 259 |
|
|
| 260 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 261 |
+ |
|
| 262 |
+ |
#ifndef USE_SPRNG |
| 263 |
+ |
|
| 264 |
+ |
#ifdef IS_MPI |
| 265 |
+ |
#error "SPRNG random number generator must be used for MPI" |
| 266 |
+ |
#else // is_mpi |
| 267 |
+ |
#warning "Using drand48 for random number generation" |
| 268 |
+ |
#endif // is_MPI |
| 269 |
|
|
| 270 |
|
vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); |
| 271 |
|
x = drand48(); |
| 281 |
|
x = drand48(); |
| 282 |
|
y = drand48(); |
| 283 |
|
jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
| 284 |
+ |
|
| 285 |
+ |
#else //use_sprng |
| 286 |
+ |
|
| 287 |
+ |
vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); |
| 288 |
+ |
jx = vbar * gaussStream->getGaussian(); |
| 289 |
+ |
|
| 290 |
+ |
vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); |
| 291 |
+ |
jy = vbar * gaussStream->getGaussian(); |
| 292 |
+ |
|
| 293 |
+ |
vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); |
| 294 |
+ |
jz = vbar * gaussStream->getGaussian(); |
| 295 |
+ |
#endif //use_sprng |
| 296 |
|
|
| 297 |
|
dAtom->setJx( jx ); |
| 298 |
|
dAtom->setJy( jy ); |