ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Thermo.cpp
Revision: 117
Committed: Tue Sep 24 22:10:55 2002 UTC (21 years, 9 months ago) by mmeineke
File size: 5300 byte(s)
Log Message:
fixed allot of warnings, and adde the molecule

File Contents

# Content
1 #include <cmath>
2
3 #include "Thermo.hpp"
4 #include "SRI.hpp"
5 #include "LRI.hpp"
6 #include "Integrator.hpp"
7
8
9 double Thermo::getKinetic(){
10
11 const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
12 double vx2, vy2, vz2;
13 double kinetic, v_sqr;
14 int kl;
15 double jx2, jy2, jz2; // the square of the angular momentums
16
17 DirectionalAtom *dAtom;
18
19 int n_atoms;
20 Atom** atoms;
21
22 n_atoms = entry_plug->n_atoms;
23 atoms = entry_plug->atoms;
24
25 kinetic = 0.0;
26 for( kl=0; kl < n_atoms; kl++ ){
27
28 vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
29 vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
30 vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
31
32 v_sqr = vx2 + vy2 + vz2;
33 kinetic += atoms[kl]->getMass() * v_sqr;
34
35 if( atoms[kl]->isDirectional() ){
36
37 dAtom = (DirectionalAtom *)atoms[kl];
38
39 jx2 = dAtom->getJx() * dAtom->getJx();
40 jy2 = dAtom->getJy() * dAtom->getJy();
41 jz2 = dAtom->getJz() * dAtom->getJz();
42
43 kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
44 + (jz2 / dAtom->getIzz());
45 }
46 }
47
48 kinetic = kinetic * 0.5 / e_convert;
49
50 return kinetic;
51 }
52
53 double Thermo::getPotential(){
54
55 double potential;
56 int el, nSRI;
57 SRI** sris;
58
59 sris = entry_plug->sr_interactions;
60 nSRI = entry_plug->n_SRI;
61
62 potential = 0.0;
63
64 potential += entry_plug->longRange->get_potential();;
65
66 // std::cerr << "long range potential: " << potential << "\n";
67
68 for( el=0; el<nSRI; el++ ){
69
70 potential += sris[el]->get_potential();
71 }
72
73 return potential;
74 }
75
76 double Thermo::getTotalE(){
77
78 double total;
79
80 total = this->getKinetic() + this->getPotential();
81 return total;
82 }
83
84 double Thermo::getTemperature(){
85
86 const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
87 double temperature;
88
89 int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
90 - entry_plug->n_constraints - 3;
91
92 temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
93 return temperature;
94 }
95
96 double Thermo::getPressure(){
97
98 // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
99 // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
100 // const double conv_A_m = 1.0E-10; //convert A -> m
101
102 return 0.0;
103 }
104
105 void Thermo::velocitize() {
106
107 double x,y;
108 double vx, vy, vz;
109 double jx, jy, jz;
110 int i, vr, vd; // velocity randomizer loop counters
111 double vdrift[3];
112 double mtot = 0.0;
113 double vbar;
114 const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
115 double av2;
116 double kebar;
117 int ndf; // number of degrees of freedom
118 int ndfRaw; // the raw number of degrees of freedom
119 int n_atoms;
120 Atom** atoms;
121 DirectionalAtom* dAtom;
122 double temperature;
123 int n_oriented;
124 int n_constraints;
125
126 atoms = entry_plug->atoms;
127 n_atoms = entry_plug->n_atoms;
128 temperature = entry_plug->target_temp;
129 n_oriented = entry_plug->n_oriented;
130 n_constraints = entry_plug->n_constraints;
131
132
133 ndfRaw = 3 * n_atoms + 3 * n_oriented;
134 ndf = ndfRaw - n_constraints - 3;
135 kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
136
137 for(vr = 0; vr < n_atoms; vr++){
138
139 // uses equipartition theory to solve for vbar in angstrom/fs
140
141 av2 = 2.0 * kebar / atoms[vr]->getMass();
142 vbar = sqrt( av2 );
143
144 // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
145
146 // picks random velocities from a gaussian distribution
147 // centered on vbar
148
149 x = drand48();
150 y = drand48();
151 vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
152
153 x = drand48();
154 y = drand48();
155 vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
156
157 x = drand48();
158 y = drand48();
159 vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
160
161 atoms[vr]->set_vx( vx );
162 atoms[vr]->set_vy( vy );
163 atoms[vr]->set_vz( vz );
164 }
165
166 // Corrects for the center of mass drift.
167 // sums all the momentum and divides by total mass.
168
169 mtot = 0.0;
170 vdrift[0] = 0.0;
171 vdrift[1] = 0.0;
172 vdrift[2] = 0.0;
173 for(vd = 0; vd < n_atoms; vd++){
174
175 vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
176 vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
177 vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
178
179 mtot = mtot + atoms[vd]->getMass();
180 }
181
182 for (vd = 0; vd < 3; vd++) {
183 vdrift[vd] = vdrift[vd] / mtot;
184 }
185
186 for(vd = 0; vd < n_atoms; vd++){
187
188 vx = atoms[vd]->get_vx();
189 vy = atoms[vd]->get_vy();
190 vz = atoms[vd]->get_vz();
191
192
193 vx -= vdrift[0];
194 vy -= vdrift[1];
195 vz -= vdrift[2];
196
197 atoms[vd]->set_vx(vx);
198 atoms[vd]->set_vy(vy);
199 atoms[vd]->set_vz(vz);
200 }
201 if( n_oriented ){
202
203 for( i=0; i<n_atoms; i++ ){
204
205 if( atoms[i]->isDirectional() ){
206
207 dAtom = (DirectionalAtom *)atoms[i];
208
209 vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
210 x = drand48();
211 y = drand48();
212 jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
213
214 vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
215 x = drand48();
216 y = drand48();
217 jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
218
219 vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
220 x = drand48();
221 y = drand48();
222 jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
223
224 dAtom->setJx( jx );
225 dAtom->setJy( jy );
226 dAtom->setJz( jz );
227 }
228 }
229 }
230 }