ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Thermo.cpp
Revision: 221
Committed: Thu Jan 2 20:14:08 2003 UTC (21 years, 6 months ago) by chuckv
File size: 6918 byte(s)
Log Message:
Thermo now can use SPRNG or rand48 (if not MPI).
Finished up work on randomSPRNG. Still need to fix
access to MPISimulation.

File Contents

# Content
1 #include <cmath>
2 #include <mpi++.h>
3
4 #include "Thermo.hpp"
5 #include "SRI.hpp"
6 #include "LRI.hpp"
7 #include "Integrator.hpp"
8
9
10 double Thermo::getKinetic(){
11
12 const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
13 double vx2, vy2, vz2;
14 double kinetic, v_sqr;
15 int kl;
16 double jx2, jy2, jz2; // the square of the angular momentums
17
18 DirectionalAtom *dAtom;
19
20 int n_atoms;
21 double kinetic_global;
22 Atom** atoms;
23
24
25 n_atoms = entry_plug->n_atoms;
26 atoms = entry_plug->atoms;
27
28 kinetic = 0.0;
29 kinetic_global = 0.0;
30 for( kl=0; kl < n_atoms; kl++ ){
31
32 vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
33 vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
34 vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
35
36 v_sqr = vx2 + vy2 + vz2;
37 kinetic += atoms[kl]->getMass() * v_sqr;
38
39 if( atoms[kl]->isDirectional() ){
40
41 dAtom = (DirectionalAtom *)atoms[kl];
42
43 jx2 = dAtom->getJx() * dAtom->getJx();
44 jy2 = dAtom->getJy() * dAtom->getJy();
45 jz2 = dAtom->getJz() * dAtom->getJz();
46
47 kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
48 + (jz2 / dAtom->getIzz());
49 }
50 }
51 #ifdef IS_MPI
52 MPI_COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
53 kinetic = kinetic_global;
54 #endif
55
56 kinetic = kinetic * 0.5 / e_convert;
57
58 return kinetic;
59 }
60
61 double Thermo::getPotential(){
62
63 double potential;
64 double potential_global;
65 int el, nSRI;
66 SRI** sris;
67
68 sris = entry_plug->sr_interactions;
69 nSRI = entry_plug->n_SRI;
70
71 potential = 0.0;
72 potential_global = 0.0;
73 potential += entry_plug->longRange->get_potential();;
74
75 // std::cerr << "long range potential: " << potential << "\n";
76 for( el=0; el<nSRI; el++ ){
77
78 potential += sris[el]->get_potential();
79 }
80
81 // Get total potential for entire system from MPI.
82 #ifdef IS_MPI
83 MPI_COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM);
84 potential = potential_global;
85 #endif
86
87 return potential;
88 }
89
90 double Thermo::getTotalE(){
91
92 double total;
93
94 total = this->getKinetic() + this->getPotential();
95 return total;
96 }
97
98 double Thermo::getTemperature(){
99
100 const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
101 double temperature;
102
103 int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
104 - entry_plug->n_constraints - 3;
105
106 temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
107 return temperature;
108 }
109
110 double Thermo::getPressure(){
111
112 // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
113 // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
114 // const double conv_A_m = 1.0E-10; //convert A -> m
115
116 return 0.0;
117 }
118
119 void Thermo::velocitize() {
120
121 double x,y;
122 double vx, vy, vz;
123 double jx, jy, jz;
124 int i, vr, vd; // velocity randomizer loop counters
125 double vdrift[3];
126 double mtot = 0.0;
127 double vbar;
128 const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
129 double av2;
130 double kebar;
131 int ndf; // number of degrees of freedom
132 int ndfRaw; // the raw number of degrees of freedom
133 int n_atoms;
134 Atom** atoms;
135 DirectionalAtom* dAtom;
136 double temperature;
137 int n_oriented;
138 int n_constraints;
139
140 atoms = entry_plug->atoms;
141 n_atoms = entry_plug->n_atoms;
142 temperature = entry_plug->target_temp;
143 n_oriented = entry_plug->n_oriented;
144 n_constraints = entry_plug->n_constraints;
145
146
147 ndfRaw = 3 * n_atoms + 3 * n_oriented;
148 ndf = ndfRaw - n_constraints - 3;
149 kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
150
151 for(vr = 0; vr < n_atoms; vr++){
152
153 // uses equipartition theory to solve for vbar in angstrom/fs
154
155 av2 = 2.0 * kebar / atoms[vr]->getMass();
156 vbar = sqrt( av2 );
157
158 // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
159
160 // picks random velocities from a gaussian distribution
161 // centered on vbar
162 #ifndef USE_SPRNG
163 /* If we are using mpi, we need to use the SPRNG random
164 generator. The non drand48 generator will just repeat
165 the same numbers for every node creating a non-gaussian
166 distribution for the simulation. drand48 is fine for the
167 single processor version of the code, but SPRNG should
168 still be preferred for consistency.
169 */
170 #ifdef IS_MPI
171 #error "SPRNG random number generator must be used for MPI"
172 #else
173 #warning "Using drand48 for random number generation"
174 #endif
175 x = drand48();
176 y = drand48();
177 vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
178
179 x = drand48();
180 y = drand48();
181 vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
182
183 x = drand48();
184 y = drand48();
185 vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
186 #endif
187
188 #ifdef USE_SPRNG
189 vx = vbar * entry_plug->gaussStream->getGaussian();
190 vy = vbar * entry_plug->gaussStream->getGaussian();
191 vz = vbar * entry_plug->gaussStream->getGaussian();
192 #endif
193
194 atoms[vr]->set_vx( vx );
195 atoms[vr]->set_vy( vy );
196 atoms[vr]->set_vz( vz );
197 }
198
199 // Corrects for the center of mass drift.
200 // sums all the momentum and divides by total mass.
201
202 mtot = 0.0;
203 vdrift[0] = 0.0;
204 vdrift[1] = 0.0;
205 vdrift[2] = 0.0;
206 for(vd = 0; vd < n_atoms; vd++){
207
208 vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
209 vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
210 vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
211
212 mtot = mtot + atoms[vd]->getMass();
213 }
214
215 for (vd = 0; vd < 3; vd++) {
216 vdrift[vd] = vdrift[vd] / mtot;
217 }
218
219 for(vd = 0; vd < n_atoms; vd++){
220
221 vx = atoms[vd]->get_vx();
222 vy = atoms[vd]->get_vy();
223 vz = atoms[vd]->get_vz();
224
225
226 vx -= vdrift[0];
227 vy -= vdrift[1];
228 vz -= vdrift[2];
229
230 atoms[vd]->set_vx(vx);
231 atoms[vd]->set_vy(vy);
232 atoms[vd]->set_vz(vz);
233 }
234 if( n_oriented ){
235
236 for( i=0; i<n_atoms; i++ ){
237
238 if( atoms[i]->isDirectional() ){
239
240 dAtom = (DirectionalAtom *)atoms[i];
241 #ifdef IS_MPI
242 #error "SPRNG random number generator must be used for MPI"
243 #else
244 #warning "Using drand48 for random number generation"
245 #endif
246
247 vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
248 x = drand48();
249 y = drand48();
250 jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
251
252 vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
253 x = drand48();
254 y = drand48();
255 jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
256
257 vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
258 x = drand48();
259 y = drand48();
260 jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
261 #endif
262 #ifdef USE_SPRNG
263 vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
264 jx = vbar * entry_plug->gaussStream->getGaussian();
265
266 vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
267 jy = vbar * entry_plug->gaussStream->getGaussian();
268
269 vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
270 jz = vbar * entry_plug->gaussStream->getGaussian();
271 #endif
272
273 dAtom->setJx( jx );
274 dAtom->setJy( jy );
275 dAtom->setJz( jz );
276 }
277 }
278 }
279 }