ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Thermo.cpp
Revision: 249
Committed: Mon Jan 27 21:28:19 2003 UTC (21 years, 5 months ago) by chuckv
File size: 7187 byte(s)
Log Message:
For some unknown reason the Single processor builds. Has not been tested!

File Contents

# Content
1 #include <cmath>
2
3 #ifdef IS_MPI
4 #include <mpi++.h>
5 #endif //is_mpi
6
7 #include "Thermo.hpp"
8 #include "SRI.hpp"
9 #include "LRI.hpp"
10 #include "Integrator.hpp"
11
12 #define BASE_SEED 123456789
13
14 Thermo::Thermo( SimInfo* the_entry_plug ) {
15 entry_plug = the_entry_plug;
16 int baseSeed = BASE_SEED;
17 gaussStream = new gaussianSPRNG( baseSeed );
18 }
19
20 Thermo::~Thermo(){
21 delete gaussStream;
22 }
23
24 double Thermo::getKinetic(){
25
26 const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
27 double vx2, vy2, vz2;
28 double kinetic, v_sqr;
29 int kl;
30 double jx2, jy2, jz2; // the square of the angular momentums
31
32 DirectionalAtom *dAtom;
33
34 int n_atoms;
35 double kinetic_global;
36 Atom** atoms;
37
38
39 n_atoms = entry_plug->n_atoms;
40 atoms = entry_plug->atoms;
41
42 kinetic = 0.0;
43 kinetic_global = 0.0;
44 for( kl=0; kl < n_atoms; kl++ ){
45
46 vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
47 vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
48 vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
49
50 v_sqr = vx2 + vy2 + vz2;
51 kinetic += atoms[kl]->getMass() * v_sqr;
52
53 if( atoms[kl]->isDirectional() ){
54
55 dAtom = (DirectionalAtom *)atoms[kl];
56
57 jx2 = dAtom->getJx() * dAtom->getJx();
58 jy2 = dAtom->getJy() * dAtom->getJy();
59 jz2 = dAtom->getJz() * dAtom->getJz();
60
61 kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
62 + (jz2 / dAtom->getIzz());
63 }
64 }
65 #ifdef IS_MPI
66 MPI_COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
67 kinetic = kinetic_global;
68 #endif //is_mpi
69
70 kinetic = kinetic * 0.5 / e_convert;
71
72 return kinetic;
73 }
74
75 double Thermo::getPotential(){
76
77 double potential;
78 double potential_global;
79 int el, nSRI;
80 SRI** sris;
81
82 sris = entry_plug->sr_interactions;
83 nSRI = entry_plug->n_SRI;
84
85 potential = 0.0;
86 potential_global = 0.0;
87 potential += entry_plug->lrPot;
88
89 // std::cerr << "long range potential: " << potential << "\n";
90 for( el=0; el<nSRI; el++ ){
91
92 potential += sris[el]->get_potential();
93 }
94
95 // Get total potential for entire system from MPI.
96 #ifdef IS_MPI
97 MPI_COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM);
98 potential = potential_global;
99 #endif // is_mpi
100
101 return potential;
102 }
103
104 double Thermo::getTotalE(){
105
106 double total;
107
108 total = this->getKinetic() + this->getPotential();
109 return total;
110 }
111
112 double Thermo::getTemperature(){
113
114 const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
115 double temperature;
116
117 int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
118 - entry_plug->n_constraints - 3;
119
120 temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
121 return temperature;
122 }
123
124 double Thermo::getPressure(){
125
126 // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
127 // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
128 // const double conv_A_m = 1.0E-10; //convert A -> m
129
130 return 0.0;
131 }
132
133 void Thermo::velocitize() {
134
135 double x,y;
136 double vx, vy, vz;
137 double jx, jy, jz;
138 int i, vr, vd; // velocity randomizer loop counters
139 double vdrift[3];
140 double mtot = 0.0;
141 double vbar;
142 const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
143 double av2;
144 double kebar;
145 int ndf; // number of degrees of freedom
146 int ndfRaw; // the raw number of degrees of freedom
147 int n_atoms;
148 Atom** atoms;
149 DirectionalAtom* dAtom;
150 double temperature;
151 int n_oriented;
152 int n_constraints;
153
154 atoms = entry_plug->atoms;
155 n_atoms = entry_plug->n_atoms;
156 temperature = entry_plug->target_temp;
157 n_oriented = entry_plug->n_oriented;
158 n_constraints = entry_plug->n_constraints;
159
160
161 ndfRaw = 3 * n_atoms + 3 * n_oriented;
162 ndf = ndfRaw - n_constraints - 3;
163 kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
164
165 for(vr = 0; vr < n_atoms; vr++){
166
167 // uses equipartition theory to solve for vbar in angstrom/fs
168
169 av2 = 2.0 * kebar / atoms[vr]->getMass();
170 vbar = sqrt( av2 );
171
172 // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
173
174 // picks random velocities from a gaussian distribution
175 // centered on vbar
176 #ifndef USE_SPRNG
177 /* If we are using mpi, we need to use the SPRNG random
178 generator. The non drand48 generator will just repeat
179 the same numbers for every node creating a non-gaussian
180 distribution for the simulation. drand48 is fine for the
181 single processor version of the code, but SPRNG should
182 still be preferred for consistency.
183 */
184
185 #ifdef IS_MPI
186 #error "SPRNG random number generator must be used for MPI"
187 #else
188 #warning "Using drand48 for random number generation"
189 #endif // is_mpi
190
191 x = drand48();
192 y = drand48();
193 vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
194
195 x = drand48();
196 y = drand48();
197 vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
198
199 x = drand48();
200 y = drand48();
201 vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
202 #endif // use_spring
203
204 #ifdef USE_SPRNG
205 vx = vbar * gaussStream->getGaussian();
206 vy = vbar * gaussStream->getGaussian();
207 vz = vbar * gaussStream->getGaussian();
208 #endif // use_spring
209
210 atoms[vr]->set_vx( vx );
211 atoms[vr]->set_vy( vy );
212 atoms[vr]->set_vz( vz );
213 }
214
215 // Corrects for the center of mass drift.
216 // sums all the momentum and divides by total mass.
217
218 mtot = 0.0;
219 vdrift[0] = 0.0;
220 vdrift[1] = 0.0;
221 vdrift[2] = 0.0;
222 for(vd = 0; vd < n_atoms; vd++){
223
224 vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
225 vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
226 vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
227
228 mtot = mtot + atoms[vd]->getMass();
229 }
230
231 for (vd = 0; vd < 3; vd++) {
232 vdrift[vd] = vdrift[vd] / mtot;
233 }
234
235 for(vd = 0; vd < n_atoms; vd++){
236
237 vx = atoms[vd]->get_vx();
238 vy = atoms[vd]->get_vy();
239 vz = atoms[vd]->get_vz();
240
241
242 vx -= vdrift[0];
243 vy -= vdrift[1];
244 vz -= vdrift[2];
245
246 atoms[vd]->set_vx(vx);
247 atoms[vd]->set_vy(vy);
248 atoms[vd]->set_vz(vz);
249 }
250 if( n_oriented ){
251
252 for( i=0; i<n_atoms; i++ ){
253
254 if( atoms[i]->isDirectional() ){
255
256 dAtom = (DirectionalAtom *)atoms[i];
257
258 #ifndef USE_SPRNG
259
260 #ifdef IS_MPI
261 #error "SPRNG random number generator must be used for MPI"
262 #else // is_mpi
263 #warning "Using drand48 for random number generation"
264 #endif // is_MPI
265
266 vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
267 x = drand48();
268 y = drand48();
269 jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
270
271 vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
272 x = drand48();
273 y = drand48();
274 jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
275
276 vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
277 x = drand48();
278 y = drand48();
279 jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y);
280
281 #else //use_sprng
282
283 vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
284 jx = vbar * gaussStream->getGaussian();
285
286 vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
287 jy = vbar * gaussStream->getGaussian();
288
289 vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
290 jz = vbar * gaussStream->getGaussian();
291 #endif //use_sprng
292
293 dAtom->setJx( jx );
294 dAtom->setJy( jy );
295 dAtom->setJz( jz );
296 }
297 }
298 }
299 }