ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mdtools/md_code/Verlet.cpp
Revision: 248
Committed: Mon Jan 27 19:28:21 2003 UTC (21 years, 5 months ago) by chuckv
File size: 8577 byte(s)
Log Message:
final version before the single processor build

File Contents

# Content
1 #include <iostream>
2 #include <stdlib.h>
3
4 #include "Atom.hpp"
5 #include "SRI.hpp"
6 #include "LRI.hpp"
7 #include "Integrator.hpp"
8 #include "SimInfo.hpp"
9 #include "Thermo.hpp"
10 #include "ReadWrite.hpp"
11
12 extern "C"{
13
14 void v_constrain_a_( double &dt, int &n_atoms, double* mass,
15 double* Rx, double* Ry, double* Rz,
16 double* Vx, double* Vy, double* Vz,
17 double* Fx, double* Fy, double* Fz,
18 int &n_constrained, double *constr_sqr,
19 int* constr_i, int* constr_j,
20 double &box_x, double &box_y, double &box_z );
21
22 void v_constrain_b_( double &dt, int &n_atoms, double* mass,
23 double* Rx, double* Ry, double* Rz,
24 double* Vx, double* Vy, double* Vz,
25 double* Fx, double* Fy, double* Fz,
26 double &Kinetic,
27 int &n_constrained, double *constr_sqr,
28 int* constr_i, int* constr_j,
29 double &box_x, double &box_y, double &box_z );
30 }
31
32
33 Verlet::Verlet( SimInfo &info, ForceField* the_ff ){
34
35 // get what information we need from the SimInfo object
36
37 entry_plug = &info;
38 myFF = the_ff;
39
40
41 c_natoms = info.n_atoms;
42 c_atoms = info.atoms;
43 c_sr_interactions = info.sr_interactions;
44 longRange = info.longRange;
45 c_n_SRI = info.n_SRI;
46 c_is_constrained = 0;
47 c_box_x = info.box_x;
48 c_box_y = info.box_y;
49 c_box_z = info.box_z;
50
51 // give a little love back to the SimInfo object
52
53 if( info.the_integrator != NULL ) delete info.the_integrator;
54 info.the_integrator = this;
55
56 // the rest are initialization issues
57
58 is_first = 1; // let the integrate method know when the first call is
59
60 // mass array setup
61
62 c_mass = new double[c_natoms];
63
64 for(int i = 0; i < c_natoms; i++){
65 c_mass[i] = c_atoms[i]->getMass();
66 }
67
68 // check for constraints
69
70 Constraint *temp_con;
71 Constraint *dummy_plug;
72 temp_con = new Constraint[c_n_SRI];
73
74 c_n_constrained = 0;
75 int constrained = 0;
76
77 for(int i = 0; i < c_n_SRI; i++){
78
79 constrained = c_sr_interactions[i]->is_constrained();
80
81 if(constrained){
82
83 dummy_plug = c_sr_interactions[i]->get_constraint();
84 temp_con[c_n_constrained].set_a( dummy_plug->get_a() );
85 temp_con[c_n_constrained].set_b( dummy_plug->get_b() );
86 temp_con[c_n_constrained].set_dsqr( dummy_plug->get_dsqr() );
87
88 c_n_constrained++;
89 constrained = 0;
90 }
91 }
92
93 if(c_n_constrained > 0){
94
95 c_is_constrained = 1;
96 c_constrained_i = new int[c_n_constrained];
97 c_constrained_j = new int[c_n_constrained];
98 c_constrained_dsqr = new double[c_n_constrained];
99
100 for( int i = 0; i < c_n_constrained; i++){
101
102 /* add 1 to the index for the fortran arrays. */
103
104 c_constrained_i[i] = temp_con[i].get_a() + 1;
105 c_constrained_j[i] = temp_con[i].get_b() + 1;
106 c_constrained_dsqr[i] = temp_con[i].get_dsqr();
107 }
108 }
109
110 delete[] temp_con;
111 }
112
113
114 Verlet::~Verlet(){
115
116 if( c_is_constrained ){
117
118 delete[] c_constrained_i;
119 delete[] c_constrained_j;
120 delete[] c_constrained_dsqr;
121 }
122
123 delete[] c_mass;
124 c_mass = 0;
125 }
126
127
128 void Verlet::integrate( void ){
129
130 int i, j; /* loop counters */
131
132 double kE;
133
134 double *Rx = new double[c_natoms];
135 double *Ry = new double[c_natoms];
136 double *Rz = new double[c_natoms];
137
138 double *Vx = new double[c_natoms];
139 double *Vy = new double[c_natoms];
140 double *Vz = new double[c_natoms];
141
142 double *Fx = new double[c_natoms];
143 double *Fy = new double[c_natoms];
144 double *Fz = new double[c_natoms];
145
146 int time;
147
148 double dt = entry_plug->dt;
149 double runTime = entry_plug->run_time;
150 double sampleTime = entry_plug->sampleTime;
151 double statusTime = entry_plug->statusTime;
152 double thermalTime = entry_plug->thermalTime;
153
154 int n_loops = (int)( runTime / dt );
155 int sample_n = (int)( sampleTime / dt );
156 int status_n = (int)( statusTime / dt );
157 int vel_n = (int)( thermalTime / dt );
158
159 Thermo *tStats = new Thermo( entry_plug );
160
161 StatWriter* e_out = new StatWriter( entry_plug );
162 DumpWriter* dump_out = new DumpWriter( entry_plug );
163
164 // the first time integrate is called, the forces need to be initialized
165
166
167 myFF->doForces();
168
169 if( entry_plug->setTemp ){
170 tStats->velocitize();
171 }
172
173 dump_out->writeDump( 0.0 );
174 e_out->writeStat( 0.0 );
175
176 if( c_is_constrained ){
177 for(i = 0; i < n_loops; i++){
178
179 // fill R, V, and F arrays and RATTLE in fortran
180
181 for( j=0; j<c_natoms; j++ ){
182
183 Rx[j] = c_atoms[j]->getX();
184 Ry[j] = c_atoms[j]->getY();
185 Rz[j] = c_atoms[j]->getZ();
186
187 Vx[j] = c_atoms[j]->get_vx();
188 Vy[j] = c_atoms[j]->get_vy();
189 Vz[j] = c_atoms[j]->get_vz();
190
191 Fx[j] = c_atoms[j]->getFx();
192 Fy[j] = c_atoms[j]->getFy();
193 Fz[j] = c_atoms[j]->getFz();
194
195 }
196
197 v_constrain_a_( dt, c_natoms, c_mass, Rx, Ry, Rz, Vx, Vy, Vz,
198 Fx, Fy, Fz,
199 c_n_constrained, c_constrained_dsqr,
200 c_constrained_i, c_constrained_j,
201 c_box_x, c_box_y, c_box_z );
202
203 for( j=0; j<c_natoms; j++ ){
204
205 c_atoms[j]->setX(Rx[j]);
206 c_atoms[j]->setY(Ry[j]);
207 c_atoms[j]->setZ(Rz[j]);
208
209 c_atoms[j]->set_vx(Vx[j]);
210 c_atoms[j]->set_vy(Vy[j]);
211 c_atoms[j]->set_vz(Vz[j]);
212 }
213
214 // calculate the forces
215
216 myFF->doForces();
217
218 // finish the constrain move ( same as above. )
219
220 for( j=0; j<c_natoms; j++ ){
221
222 Rx[j] = c_atoms[j]->getX();
223 Ry[j] = c_atoms[j]->getY();
224 Rz[j] = c_atoms[j]->getZ();
225
226 Vx[j] = c_atoms[j]->get_vx();
227 Vy[j] = c_atoms[j]->get_vy();
228 Vz[j] = c_atoms[j]->get_vz();
229
230 Fx[j] = c_atoms[j]->getFx();
231 Fy[j] = c_atoms[j]->getFy();
232 Fz[j] = c_atoms[j]->getFz();
233 }
234
235 v_constrain_b_( dt, c_natoms, c_mass, Rx, Ry, Rz, Vx, Vy, Vz,
236 Fx, Fy, Fz,
237 kE, c_n_constrained, c_constrained_dsqr,
238 c_constrained_i, c_constrained_j,
239 c_box_x, c_box_y, c_box_z );
240
241 for( j=0; j<c_natoms; j++ ){
242
243 c_atoms[j]->setX(Rx[j]);
244 c_atoms[j]->setY(Ry[j]);
245 c_atoms[j]->setZ(Rz[j]);
246
247 c_atoms[j]->set_vx(Vx[j]);
248 c_atoms[j]->set_vy(Vy[j]);
249 c_atoms[j]->set_vz(Vz[j]);
250 }
251
252 time = i + 1;
253
254 if( entry_plug->setTemp ){
255 if( !(time % vel_n) ) tStats->velocitize();
256 }
257 if( !(time % sample_n) ) dump_out->writeDump( time * dt );
258 if( !(time % status_n) ) e_out->writeStat( time * dt );
259 }
260 }
261 else{
262 for(i = 0; i < n_loops; i++){
263
264 move_a( dt );
265
266 // calculate the forces
267
268 myFF->doForces();
269
270 // complete the verlet move
271
272 move_b( dt );
273
274 time = i + 1;
275
276 if( entry_plug->setTemp ){
277 if( !(time % vel_n) ) tStats->velocitize();
278 }
279 if( !(time % sample_n) ) dump_out->writeDump( time * dt );
280 if( !(time % status_n) ) e_out->writeStat( time * dt );
281 }
282 }
283
284 dump_out->writeFinal();
285
286 delete dump_out;
287 delete e_out;
288
289 }
290
291
292 void Verlet::move_a(double dt){
293
294 const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2
295
296 double qx, qy, qz;
297 double vx, vy, vz;
298 int ma;
299 double h_dt = 0.5 * dt;
300 double h_dt2 = h_dt * dt;
301
302 for( ma = 0; ma < c_natoms; ma++){
303
304 qx = c_atoms[ma]->getX() + dt * c_atoms[ma]->get_vx() +
305 h_dt2 * c_atoms[ma]->getFx() * e_convert / c_atoms[ma]->getMass();
306 qy = c_atoms[ma]->getY() + dt * c_atoms[ma]->get_vy() +
307 h_dt2 * c_atoms[ma]->getFy() * e_convert / c_atoms[ma]->getMass();
308 qz = c_atoms[ma]->getZ() + dt * c_atoms[ma]->get_vz() +
309 h_dt2 * c_atoms[ma]->getFz() * e_convert / c_atoms[ma]->getMass();
310
311 vx = c_atoms[ma]->get_vx() +
312 h_dt * c_atoms[ma]->getFx() * e_convert / c_atoms[ma]->getMass();
313 vy = c_atoms[ma]->get_vy() +
314 h_dt * c_atoms[ma]->getFy() * e_convert / c_atoms[ma]->getMass();
315 vz = c_atoms[ma]->get_vz() +
316 h_dt * c_atoms[ma]->getFz() * e_convert / c_atoms[ma]->getMass();
317
318 c_atoms[ma]->setX(qx);
319 c_atoms[ma]->setY(qy);
320 c_atoms[ma]->setZ(qz);
321
322 c_atoms[ma]->set_vx(vx);
323 c_atoms[ma]->set_vy(vy);
324 c_atoms[ma]->set_vz(vz);
325 }
326 }
327
328 void Verlet::move_b( double dt ){
329
330 const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2
331
332 double vx, vy, vz;
333 int mb;
334 double h_dt = 0.5 * dt;
335
336
337 for( mb = 0; mb < c_natoms; mb++){
338
339 vx = c_atoms[mb]->get_vx() +
340 h_dt * c_atoms[mb]->getFx() * e_convert / c_atoms[mb]->getMass();
341 vy = c_atoms[mb]->get_vy() +
342 h_dt * c_atoms[mb]->getFy() * e_convert / c_atoms[mb]->getMass();
343 vz = c_atoms[mb]->get_vz() +
344 h_dt * c_atoms[mb]->getFz() * e_convert / c_atoms[mb]->getMass();
345
346 c_atoms[mb]->set_vx(vx);
347 c_atoms[mb]->set_vy(vy);
348 c_atoms[mb]->set_vz(vz);
349 }
350 }