| 26 |
|
} |
| 27 |
|
|
| 28 |
|
|
| 29 |
< |
void mpiSimulation::divideLabor(int nComponents, MoleculeStamp** compStamps, int* componentsNmol ){ |
| 30 |
< |
|
| 29 |
> |
void mpiSimulation::divideLabor( void ){ |
| 30 |
> |
|
| 31 |
> |
int nComponents; |
| 32 |
> |
MoleculeStamp** compStamps; |
| 33 |
> |
int* componentsNmol; |
| 34 |
> |
|
| 35 |
|
double numerator; |
| 36 |
|
double denominator; |
| 37 |
|
double precast; |
| 39 |
|
int nTarget; |
| 40 |
|
int molIndex, atomIndex, compIndex, compStart; |
| 41 |
|
int done; |
| 42 |
< |
int nLocal; |
| 42 |
> |
int nLocal, molLocal; |
| 43 |
|
int i; |
| 44 |
|
int smallDiff, bigDiff; |
| 45 |
|
|
| 46 |
|
int testSum; |
| 47 |
|
|
| 48 |
+ |
nComponents = entryPlug->nComponents; |
| 49 |
+ |
compStamps = entryPlug->compStamps; |
| 50 |
+ |
componentsNmol = entryPlug->componentsNmol; |
| 51 |
+ |
|
| 52 |
+ |
simTotAtoms = entryPlug->n_atoms; |
| 53 |
+ |
simTotBonds = entryPlug->n_bonds; |
| 54 |
+ |
simTotBends = entryPlug->n_bends; |
| 55 |
+ |
simTotTorsions = entryPlug->n_torsions; |
| 56 |
+ |
simTotSRI = entryPlug->n_SRI; |
| 57 |
+ |
simTotNmol = entryPlug->n_nmol; |
| 58 |
+ |
|
| 59 |
|
numerator = (double) entryPlug->n_atoms; |
| 60 |
|
denominator = (double) numberProcessors; |
| 61 |
|
precast = numerator / denominator; |
| 69 |
|
|
| 70 |
|
done = 0; |
| 71 |
|
nLocal = 0; |
| 72 |
+ |
molLocal = 0; |
| 73 |
|
|
| 74 |
|
if( i == myNode ){ |
| 75 |
|
myMolStart = molIndex; |
| 87 |
|
nLocal += compStamps[compIndex]->getNAtoms(); |
| 88 |
|
atomIndex += compStamps[compIndex]->getNAtoms(); |
| 89 |
|
molIndex++; |
| 90 |
+ |
molLocal++; |
| 91 |
|
|
| 92 |
|
if ( nLocal == nTarget ) done = 1; |
| 93 |
|
|
| 100 |
|
if( bigDiff < smallDiff ) done = 1; |
| 101 |
|
else{ |
| 102 |
|
molIndex--; |
| 103 |
+ |
molLocal--; |
| 104 |
|
atomIndex -= compStamps[compIndex]->getNAtoms(); |
| 105 |
|
nLocal -= compStamps[compIndex]->getNAtoms(); |
| 106 |
|
done = 1; |
| 112 |
|
myMolEnd = (molIndex - 1); |
| 113 |
|
myAtomEnd = (atomIndex - 1); |
| 114 |
|
myNlocal = nLocal; |
| 115 |
+ |
myMol = molLocal; |
| 116 |
|
} |
| 117 |
|
|
| 118 |
|
numerator = (double)( entryPlug->n_atoms - atomIndex ); |
| 126 |
|
myAtomStart = atomIndex; |
| 127 |
|
|
| 128 |
|
nLocal = 0; |
| 129 |
+ |
molLocal = 0; |
| 130 |
|
while( compIndex < nComponents ){ |
| 131 |
|
|
| 132 |
|
if( (molIndex-compStart) >= componentsNmol[compIndex] ){ |
| 138 |
|
nLocal += compStamps[compIndex]->getNAtoms(); |
| 139 |
|
atomIndex += compStamps[compIndex]->getNAtoms(); |
| 140 |
|
molIndex++; |
| 141 |
+ |
molLocal++; |
| 142 |
|
} |
| 143 |
|
|
| 144 |
|
myMolEnd = (molIndex - 1); |
| 145 |
|
myAtomEnd = (atomIndex - 1); |
| 146 |
< |
myNlocal = nLocal; |
| 146 |
> |
myNlocal = nLocal; |
| 147 |
> |
myMol = molLocal; |
| 148 |
|
} |
| 149 |
|
|
| 150 |
|
|
| 163 |
|
sprintf( checkPointMsg, |
| 164 |
|
"Successfully divided the molecules among the processors.\n" ); |
| 165 |
|
MPIcheckPoint(); |
| 166 |
+ |
|
| 167 |
+ |
// lets create the identity array |
| 168 |
|
} |