# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include <mpi++.h> |
2 | < | #include <mpiSimulation.hpp> |
1 | > | i#include <cstdlib> |
2 | > | #include <cstring> |
3 | > | #include <mpi.h> |
4 | ||
5 | < | mpiSimulation::mpiSimulation() |
5 | > | #include "mpiSimulation.hpp" |
6 | > | #include "simError.h" |
7 | > | |
8 | > | |
9 | > | |
10 | > | mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) |
11 | { | |
12 | < | int mpi_error; |
12 | > | entryPlug = the_entryPlug; |
13 | > | |
14 | > | numberProcessors = MPI::COMM_WORLD.Get_size(); |
15 | > | myNode = worldRank; |
16 | > | |
17 | > | // let the simulation know were there. |
18 | > | entryPlug->mpiSim = this; |
19 | > | } |
20 | ||
8 | – | MPI::Init(); |
21 | ||
22 | < | numberProcessors = MPI::Comm::Get_size(); |
23 | < | myNode = MPI::Comm::Get_rank(); |
24 | < | MPI::Get_processor_name(processorName,&processorNameLen); |
22 | > | mpiSimulation::~mpiSimulation(){ |
23 | > | |
24 | > | // empty for now |
25 | > | |
26 | } | |
27 | ||
15 | – | mpiSimulation::mpiInitSimulation(SimInfo* entry_plug) |
16 | – | { |
28 | ||
29 | < | // need to get nmol here...... |
29 | > | void mpiSimulation::divideLabor( void ){ |
30 | ||
31 | + | int nComponents; |
32 | + | MoleculeStamp** compStamps; |
33 | + | int* componentsNmol; |
34 | ||
35 | + | double numerator; |
36 | + | double denominator; |
37 | + | double precast; |
38 | ||
39 | < | myMolStart = nint(float(node)/numberProcessors*entry_plug->n_mol); |
40 | < | myMolEnd = nint(float(node + 1)/numberProcessors*entry_plug->n_mol;); |
41 | < | nMolLocal = myMolEnd - myMolStart + 1 |
39 | > | int nTarget; |
40 | > | int molIndex, atomIndex, compIndex, compStart; |
41 | > | int done; |
42 | > | int nLocal, molLocal; |
43 | > | int i; |
44 | > | int smallDiff, bigDiff; |
45 | > | |
46 | > | int testSum; |
47 | > | |
48 | > | nComponents = entryPlug->nComponents; |
49 | > | compStamps = entryPlug->compStamps; |
50 | > | componentsNmol = entryPlug->componentsNmol; |
51 | > | |
52 | > | numerator = (double) entryPlug->n_atoms; |
53 | > | denominator = (double) numberProcessors; |
54 | > | precast = numerator / denominator; |
55 | > | nTarget = (int)( precast + 0.5 ); |
56 | > | |
57 | > | molIndex = 0; |
58 | > | atomIndex = 0; |
59 | > | compIndex = 0; |
60 | > | compStart = 0; |
61 | > | for( i=0; i<(numberProcessors-1); i++){ |
62 | > | |
63 | > | done = 0; |
64 | > | nLocal = 0; |
65 | > | molLocal = 0; |
66 | > | |
67 | > | if( i == myNode ){ |
68 | > | myMolStart = molIndex; |
69 | > | myAtomStart = atomIndex; |
70 | > | } |
71 | > | |
72 | > | while( !done ){ |
73 | > | |
74 | > | if( (molIndex-compStart) >= componentsNmol[compIndex] ){ |
75 | > | compStart = molIndex; |
76 | > | compIndex++; |
77 | > | continue; |
78 | > | } |
79 | > | |
80 | > | nLocal += compStamps[compIndex]->getNAtoms(); |
81 | > | atomIndex += compStamps[compIndex]->getNAtoms(); |
82 | > | molIndex++; |
83 | > | molLocal++; |
84 | > | |
85 | > | if ( nLocal == nTarget ) done = 1; |
86 | > | |
87 | > | else if( nLocal < nTarget ){ |
88 | > | smallDiff = nTarget - nLocal; |
89 | > | } |
90 | > | else if( nLocal > nTarget ){ |
91 | > | bigDiff = nLocal - nTarget; |
92 | > | |
93 | > | if( bigDiff < smallDiff ) done = 1; |
94 | > | else{ |
95 | > | molIndex--; |
96 | > | molLocal--; |
97 | > | atomIndex -= compStamps[compIndex]->getNAtoms(); |
98 | > | nLocal -= compStamps[compIndex]->getNAtoms(); |
99 | > | done = 1; |
100 | > | } |
101 | > | } |
102 | > | } |
103 | > | |
104 | > | if( i == myNode ){ |
105 | > | myMolEnd = (molIndex - 1); |
106 | > | myAtomEnd = (atomIndex - 1); |
107 | > | myNlocal = nLocal; |
108 | > | myMol = molLocal; |
109 | > | } |
110 | > | |
111 | > | numerator = (double)( entryPlug->n_atoms - atomIndex ); |
112 | > | denominator = (double)( numberProcessors - (i+1) ); |
113 | > | precast = numerator / denominator; |
114 | > | nTarget = (int)( precast + 0.5 ); |
115 | > | } |
116 | > | |
117 | > | if( myNode == numberProcessors-1 ){ |
118 | > | myMolStart = molIndex; |
119 | > | myAtomStart = atomIndex; |
120 | > | |
121 | > | nLocal = 0; |
122 | > | molLocal = 0; |
123 | > | while( compIndex < nComponents ){ |
124 | > | |
125 | > | if( (molIndex-compStart) >= componentsNmol[compIndex] ){ |
126 | > | compStart = molIndex; |
127 | > | compIndex++; |
128 | > | continue; |
129 | > | } |
130 | > | |
131 | > | nLocal += compStamps[compIndex]->getNAtoms(); |
132 | > | atomIndex += compStamps[compIndex]->getNAtoms(); |
133 | > | molIndex++; |
134 | > | molLocal++; |
135 | > | } |
136 | > | |
137 | > | myMolEnd = (molIndex - 1); |
138 | > | myAtomEnd = (atomIndex - 1); |
139 | > | myNlocal = nLocal; |
140 | > | myMol = molLocal; |
141 | > | } |
142 | > | |
143 | > | |
144 | > | MPI_Allreduce( &Nlocal, &testSum, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD ); |
145 | > | |
146 | > | if( myNode == 0 ){ |
147 | > | if( testSum != entryPlug->n_atoms ){ |
148 | > | sprintf( painCave.errMsg, |
149 | > | "The summ of all nLocals, %d, did not equal the total number of atoms, %d.\n", |
150 | > | testSum, entryPlug->n_atoms ); |
151 | > | painCave.isFatal = 1; |
152 | > | simError(); |
153 | > | } |
154 | > | } |
155 | > | |
156 | > | sprintf( checkPointMsg, |
157 | > | "Successfully divided the molecules among the processors.\n" ); |
158 | > | MPIcheckPoint(); |
159 | > | |
160 | > | // lets create the identity array |
161 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |