ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Dielectric_Supplemental.tex
Revision: 4404
Committed: Tue Mar 29 15:27:46 2016 UTC (8 years, 3 months ago) by gezelter
Content type: application/x-tex
File size: 20827 byte(s)
Log Message:
Latest edits

File Contents

# User Rev Content
1 gezelter 4399 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23     aip,jcp,
24     amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29     jcp]{revtex4-1}
30    
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33     %\usepackage{bm}% bold math
34     \usepackage{times}
35     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37     \usepackage{rotating}
38 gezelter 4404 \usepackage{braket}
39 gezelter 4399
40 gezelter 4404
41 gezelter 4399 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
42     %\linenumbers\relax % Commence numbering lines
43    
44     \begin{document}
45    
46     \title[Real space electrostatics for multipoles. III. Dielectric Properties]
47     {Supplemental Material for: Real space electrostatics for multipoles. III. Dielectric Properties}
48    
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52     \author{Thomas Parsons}
53     \affiliation{Department of Chemistry and Biochemistry, University
54     of Notre Dame, Notre Dame, IN 46556}
55     \author{Kathie E. Newman}
56     \affiliation{Department of Physics, University
57     of Notre Dame, Notre Dame, IN 46556}
58     \author{J. Daniel Gezelter}
59     \email{gezelter@nd.edu.}
60     \affiliation{Department of Chemistry and Biochemistry, University
61     of Notre Dame, Notre Dame, IN 46556}
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \maketitle
67    
68     \newpage
69    
70 gezelter 4404
71 gezelter 4399 \section{Boltzmann averages for orientational polarization}
72     The dielectric properties of the system is mainly arise from two
73     different ways: i) the applied field distort the charge distributions
74     so it produces an induced multipolar moment in each molecule; and ii)
75     the applied field tends to line up originally randomly oriented
76     molecular moment towards the direction of the applied field. In this
77     study, we basically focus on the orientational contribution in the
78     dielectric properties. If we consider a system of molecules in the
79     presence of external field perturbation, the perturbation experienced
80     by any molecule will not be only due to external field or field
81     gradient but also due to the field or field gradient produced by the
82     all other molecules in the system. In the following subsections
83     \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad},
84     we will discuss about the molecular polarization only due to external
85     field perturbation. The contribution of the field or field gradient
86     due to all other molecules will be taken into account while
87     calculating correction factor in the section \ref{sec:corrFactor}.
88    
89     \subsection{Dipoles}
90     \label{subsec:boltzAverage-Dipole}
91     Consider a system of molecules, each with permanent dipole moment
92     $p_o$. In the absense of external field, thermal agitation orients the
93     dipoles randomly, reducing the system moment to zero. External fields
94     will tend to line up the dipoles in the direction of applied field.
95     Here we have considered net field from all other molecules is
96     considered to be zero. Therefore the total Hamiltonian of each
97     molecule is,\cite{Jackson98}
98     \begin{equation}
99     H = H_o - \bf{p_o} .\bf{E},
100     \end{equation}
101     where $H_o$ is a function of the internal coordinates of the molecule.
102     The Boltzmann average of the dipole moment is given by,
103     \begin{equation}
104     \braket{p_{mol}} = \frac{\displaystyle\int d\Omega\; p_o\; cos\theta\; e^{\frac{p_oE\; cos\theta}{k_B T}}}{\displaystyle\int d\Omega\; e^{\frac{p_oE\;cos\theta}{k_B T}}},
105     \end{equation}
106     where $\bf{E}$ is selected along z-axis. If we consider that the
107     applied field is small, \textit{i.e.} $\frac{p_oE\; cos\theta}{k_B T} << 1$,
108     \begin{equation}
109     \braket{p_{mol}} \approx \frac{1}{3}\frac{{p_o}^2}{k_B T}E,
110     \end{equation}
111     where $ \alpha_p = \frac{1}{3}\frac{{p_o}^2}{k_B T}$ is a molecular
112     polarizability. The orientational polarization depends inversely on
113     the temperature and applied field must overcome the thermal agitation.
114    
115     \subsection{Quadrupoles}
116     \label{subsec:boltzAverage-Quad}
117     Consider a system of molecules with permanent quadrupole moment
118     $q_{\alpha\beta} $. The average quadrupole moment at temperature T in
119     the presence of uniform applied field gradient is given
120     by,\cite{AduGyamfi78, AduGyamfi81}
121     \begin{equation}
122     \braket{q_{\alpha\beta}} \;=\; \frac{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}} \;=\; \frac{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
123     \label{boltzQuad}
124     \end{equation}
125     where $\int d\Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
126     sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
127     angles, $ H = H_o -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
128     a quadrupole in the gradient of the
129     applied field and $ H_o$ is a function of internal coordinates of the molecule. The energy and quadrupole moment can be transformed into body frame using following relation,
130     \begin{equation}
131     \begin{split}
132     &q_{\alpha\beta} = \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
133     &H = H_o - q:\vec{\nabla}\vec{E} = H_o - q_{\mu\nu}\;\partial_\nu E_\mu = H_o -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu.
134     \end{split}
135     \label{energyQuad}
136     \end{equation}
137     Here the starred tensors are the components in the body fixed
138     frame. Substituting equation (\ref{energyQuad}) in the equation (\ref{boltzQuad})
139     and taking linear terms in the expansion we get,
140     \begin{equation}
141     \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)},
142     \end{equation}
143     where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms
144     the body fixed co-ordinates to the space co-ordinates,
145     \[\eta_{\alpha\alpha'}
146     = \left(\begin{array}{ccc}
147     cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
148     cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
149     sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
150     \end{array} \right).\]
151     Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
152     and $8 \pi^2 /3\;\vec{\nabla}.\vec{E}\; Tr(q^*) $ respectively. The
153     second term vanishes for charge free space
154     (i.e. $\vec{\nabla}.\vec{E} \; = \; 0)$. Similarly integration of the
155     1st term in the numerator produces
156     $8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
157     $8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
158     {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
159     if $\vec{\nabla}.\vec{E} \; = \; 0$,
160     $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
161     ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
162     Boltzmann average of a quadrupole moment can be written as,
163    
164     \begin{equation}
165     \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
166     \end{equation}
167     where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupolarizablity and ${\bar{q_o}}^2=
168     3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule.
169    
170 gezelter 4404 \section{External application of a uniform field gradient}
171     \label{Ap:fieldOrGradient}
172 gezelter 4399
173 gezelter 4404 To satisfy the condition $ \nabla . E = 0 $, within the box of molecules we have taken electrostatic potential in the following form
174     \begin{equation}
175     \begin{split}
176     \phi(x, y, z) =\; &-g_o \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
177     & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z + \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right),
178     \end{split}
179     \label{eq:appliedPotential}
180     \end{equation}
181     where $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ are basis vectors determine coefficients in x, y, and z direction. And $g_o$ and $\psi$ are overall strength of the potential and angle between basis vectors respectively. The electric field derived from the above potential is,
182     \[\bf{E}
183     =\frac{g_o}{2} \left(\begin{array}{ccc}
184     2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+ (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
185     (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y + (a_2\; b_3 \;+ a_3\; b_3)\;z \\
186     (a_3\; b_1 \;+ a_3\; b_2)\;x + (a_3\; b_2 \;+ a_2\; b_3)y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
187     \end{array} \right).\]
188     The gradient of the applied field derived from the potential can be written in the following form,
189     \[\nabla\bf{E}
190     = \frac{g_o}{2}\left(\begin{array}{ccc}
191     2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1)\;z \\
192     (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3)\;z \\
193     (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
194     \end{array} \right).\]
195    
196    
197     \section{Point-multipolar interactions with a spatially-varying electric field}
198    
199     We can treat objects $a$, $b$, and $c$ containing embedded collections
200     of charges. When we define the primitive moments, we sum over that
201     collections of charges using a local coordinate system within each
202     object. The point charge, dipole, and quadrupole for object $a$ are
203     given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively.
204     These are the primitive multipoles which can be expressed as a
205     distribution of charges,
206     \begin{align}
207     C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
208     D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
209     Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
210     r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
211     \end{align}
212     Note that the definition of the primitive quadrupole here differs from
213     the standard traceless form, and contains an additional Taylor-series
214     based factor of $1/2$. In Paper 1, we derived the forces and torques
215     each object exerts on the others.
216    
217     Here we must also consider an external electric field that varies in
218     space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
219     object $a$ will then experience a slightly different field. This
220     electric field can be expanded in a Taylor series around the local
221     origin of each object. A different Taylor series expansion is carried
222     out for each object.
223    
224     For a particular charge $q_k$, the electric field at that site's
225     position is given by:
226     \begin{equation}
227     E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
228     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
229     r_{k \varepsilon} + ...
230     \end{equation}
231     Note that the electric field is always evaluated at the origin of the
232     objects, and treating each object using point multipoles simplifies
233     this greatly.
234    
235     To find the force exerted on object $a$ by the electric field, one
236     takes the electric field expression, and multiplies it by $q_k$, and
237     then sum over all charges in $a$:
238    
239     \begin{align}
240     F_\gamma &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
241     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
242     r_{k \varepsilon} + ... \rbrace \\
243     &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
244     + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
245     ...
246     \end{align}
247    
248     Similarly, the torque exerted by the field on $a$ can be expressed as
249     \begin{align}
250     \tau_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
251     & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
252     r_{k\beta} E_\gamma(\mathbf r_k) \\
253     & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
254     + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
255     E_\gamma + ...
256     \end{align}
257    
258     The last term is essentially identical with form derived by Torres del
259     Castillo and M\'{e}ndez Garrido,\cite{Torres-del-Castillo:2006uo} although their derivation
260     utilized a traceless form of the quadrupole that is different than the
261     primitive definition in use here. We note that the Levi-Civita symbol
262     can be eliminated by utilizing the matrix cross product in an
263     identical form as in Ref. \onlinecite{Smith98}:
264     \begin{equation}
265     \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
266     \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
267     -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
268     \right]
269     \label{eq:matrixCross}
270     \end{equation}
271     where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
272     the matrix indices. In table \ref{tab:UFT} we give compact
273     expressions for how the multipole sites interact with an external
274     field that has exhibits spatial variations.
275    
276     \begin{table}
277     \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
278     $(\mathbf{\tau})$ expressions for a multipolar site embedded in an
279     electric field with spatial variations, $\mathbf{E}(\mathbf{r})$.
280     \label{tab:UFT}}
281     \begin{tabular}{r|ccc}
282     & Charge & Dipole & Quadrupole \\ \hline
283     $U$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
284     $\mathbf{F}$ & $C \mathbf{E}(\mathbf{r})$ & $+\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $+\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
285     $\mathbf{\tau}$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $+2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
286     \end{tabular}
287     \end{table}
288    
289     \section{Gradient of the field due to quadrupolar polarization}
290     \label{singularQuad}
291     In this section, we will discuss the gradient of the field produced by
292     quadrupolar polarization. For this purpose, we consider a distribution
293     of charge ${\rho}(r)$ which gives rise to an electric field
294     $\vec{E}(r)$ and gradient of the field $\vec{\nabla} \vec{E}(r)$
295     throughout space. The total gradient of the electric field over volume
296     due to the all charges within the sphere of radius $R$ is given by
297     (cf. Jackson equation 4.14):
298     \begin{equation}
299     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = -\int_{r=R} R^2 \vec{E}\;\hat{n}\; d\Omega
300     \label{eq:8}
301     \end{equation}
302     where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
303     of the surface of the sphere which is equal to
304     $sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} +
305     cos[\theta]\hat{z}$
306     in spherical coordinates. For the charge density ${\rho}(r')$, the
307     total gradient of the electric field can be written as (cf. Jackson
308     equation 4.16),
309     \begin{equation}
310     \int_{r<R} \vec{\nabla}\vec{E}\; d^3r=-\int_{r=R} R^2\; \vec{\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; \vec{\nabla}\;\left(\int \frac{\rho(r')}{|\vec{r}-\vec{r'}|}\;d^3r'\right) \hat{n}\; d\Omega
311     \label{eq:9}
312     \end{equation}
313     The radial function in the equation (\ref{eq:9}) can be expressed in
314     terms of spherical harmonics as (cf. Jackson equation 3.70),
315     \begin{equation}
316     \frac{1}{|\vec{r} - \vec{r'}|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
317     \label{eq:10}
318     \end{equation}
319     If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
320     \begin{equation}
321     \begin{split}
322     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; \vec{\nabla}\;\left(\int \rho(r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\
323     &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r
324     '
325     \end{split}
326     \label{eq:11}
327     \end{equation}
328     The gradient of the product of radial function and spherical harmonics
329     is given by (cf. Arfken, p.811 eq. 16.94):
330     \begin{equation}
331     \begin{split}
332     \vec{\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
333     {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
334     \end{split}
335     \label{eq:12}
336     \end{equation}
337     Using equation (\ref{eq:12}) we get,
338     \begin{equation}
339     \vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
340     \label{eq:13}
341     \end{equation}
342     where $ Y_{l,l+1,m}(\theta, \phi)$ is the vector spherical harmonics
343     which can be expressed in terms of spherical harmonics as shown in
344     below (cf. Arfkan p.811),
345     \begin{equation}
346     Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2},
347     \label{eq:14}
348     \end{equation}
349     where $C(l+1,1,l|m_1,m_2,m)$ is a Clebsch-Gordan coefficient and
350     $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
351     in terms of Cartesian coordinates,
352     \begin{equation}
353     {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}
354     \label{eq:15}
355     \end{equation}
356     The normal vector $\hat{n} $ can be expressed in terms of spherical tensor of rank 1 as shown in below,
357     \begin{equation}
358     \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)
359     \label{eq:16}
360     \end{equation}
361     The surface integral of the product of $\hat{n}$ and
362     ${Y_{l+1}}^{m_1}(\theta, \phi)$ gives,
363     \begin{equation}
364     \begin{split}
365     \int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
366     &= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
367     &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
368     \end{split}
369     \label{eq:17}
370     \end{equation}
371     where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and
372     $ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega =
373     \delta_{ll'}\delta_{mm'} $.
374     Non-vanishing values of equation \ref{eq:17} require $l = 0$,
375     therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
376     1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
377     provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
378     modified,
379     \begin{equation}
380     \begin{split}
381     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
382     1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r'.
383     \end{split}
384     \label{eq:18}
385     \end{equation}
386     After substituting ${Y^*}_{00} = \frac{1}{\sqrt{4\pi}} $ and using the
387     values of the Clebsch-Gorden coefficients: $ C(1, 1, 0|-1,1,0) =
388     \frac{1}{\sqrt{3}}, \; C(1, 1, 0|-1,1,0)= \frac{1}{\sqrt{3}}$ and $
389     C(1, 1, 0|0,0,0) = -\frac{1}{\sqrt{3}}$ in equation \ref{eq:18} we
390     obtain,
391     \begin{equation}
392     \begin{split}
393     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
394     &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
395     \end{split}
396     \label{eq:19}
397     \end{equation}
398     Equation (\ref{eq:19}) gives the total gradient of the field over a
399     sphere due to the distribution of the charges. For quadrupolar fluids
400     the total charge within a sphere is zero, therefore
401     $ \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = 0 $. Hence the quadrupolar
402     polarization produces zero net gradient of the field inside the
403     sphere.
404    
405    
406 gezelter 4399 \bibliography{dielectric_new}
407     \end{document}
408     %
409     % ****** End of file multipole.tex ******