ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Dielectric_Supplemental.tex
(Generate patch)

Comparing trunk/multipole/Dielectric_Supplemental.tex (file contents):
Revision 4417 by gezelter, Sun Apr 10 12:57:41 2016 UTC vs.
Revision 4418 by gezelter, Sun Apr 10 15:13:19 2016 UTC

# Line 36 | Line 36 | jcp]{revtex4-1}
36   \usepackage{url}
37   \usepackage{rotating}
38   \usepackage{braket}
39 + \usepackage{array}
40 + \newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
41 + \newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
42 + \newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
43  
44  
45 +
46   %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
47   %\linenumbers\relax % Commence numbering lines
48  
# Line 63 | Line 68 | of Notre Dame, Notre Dame, IN 46556}
68   \date{\today}% It is always \today, today,
69               %  but any date may be explicitly specified
70  
71 + \begin{abstract}
72 +  This document includes useful relationships for computing the
73 +  interactions between fields and field gradients and point multipolar
74 +  representations of molecular electrostatics.  We also provide
75 +  explanatory derivations of a number of relationships used in the
76 +  main text. This includes the Boltzmann averages of quadrupole
77 +  orientations, and the interaction of a quadrupole with the
78 +  self-generated field gradient. This last relationship is assumed to
79 +  be zero in the main text but is explicitly shown to be zero here.
80 + \end{abstract}
81 +
82   \maketitle
83  
84 < This document contains derivations of useful relationships for
85 < electric field gradients and their interactions with point multipoles.
86 < We rely heavily on both the notation and results from Torres del
87 < Castillo and Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo} In
88 < this work, tensors are expressed in Cartesian components, using at
89 < times a dyadic notation. This proves quite useful for our work as we
90 < employ toroidal boundary conditions in our simulations, and these are
91 < easily implemented in Cartesian coordinate systems.
84 > \section{Generating Uniform Field Gradients}
85 > One important task in performing out the simulations mentioned in the
86 > main text was to generate uniform electric field gradients. We rely
87 > heavily on both the notation and results from Torres del Castillo and
88 > Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo} In this work,
89 > tensors were expressed in Cartesian components, using at times a
90 > dyadic notation. This proves quite useful for computer simulations
91 > that make use of toroidal boundary conditions.
92  
93   An alternative formalism uses the theory of angular momentum and
94   spherical harmonics and is common in standard physics texts such as
95 < Jackson,\cite{Jackson98} Morse and Feshbach, and Baym. Because this
96 < approach has its own advantages, relationships are provided below
97 < comparing that terminology to the Cartesian tensor notation.
95 > Jackson,\cite{Jackson98} Morse and Feshbach,\cite{Morse:1946zr} and
96 > Stone.\cite{Stone:1997ly} Because this approach has its own
97 > advantages, relationships are provided below comparing that
98 > terminology to the Cartesian tensor notation.
99  
100   The gradient of the electric field,
101   \begin{equation*}
# Line 100 | Line 117 | written:
117   electrostatic potential that generates a uniform gradient may be
118   written:
119   \begin{align}
120 < \Phi(x, y, z) =\; -g_o & \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
121 < & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z +  \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right) .
120 > \Phi(x, y, z) =\; -\frac{g_o}{2} & \left(\left(a_1b_1 -
121 >                         \frac{cos\psi}{3}\right)\;x^2+\left(a_2b_2
122 >                         - \frac{cos\psi}{3}\right)\;y^2 +
123 >                         \left(a_3b_3 -
124 >                         \frac{cos\psi}{3}\right)\;z^2 \right. \nonumber \\
125 > & + (a_1b_2 + a_2b_1)\; xy + (a_1b_3 + a_3b_1)\; xz + (a_2b_3 + a_3b_2)\; yz \bigg) .
126   \label{eq:appliedPotential}
127   \end{align}
128   Note $\mathbf{a}\cdot\mathbf{a} = \mathbf{b} \cdot \mathbf{b} = 1$,
129   $\mathbf{a} \cdot \mathbf{b}=\cos \psi$, and $g_0$ is the overall
130 < strength of the potential.  
130 > strength of the potential.
131  
132 < An alternative to this notation is to write an electrostatic potential
133 < that generates a uniform gradient using the notation of Morse and
134 < Feshbach,
132 > Taking the gradient of Eq. (\ref{eq:appliedPotential}), we find the
133 > field due to this potential,
134 > \begin{equation}
135 > \mathbf{E} = -\nabla \Phi
136 > =\frac{g_o}{2} \left(\begin{array}{ccc}
137 > 2(a_1 b_1 - \frac{cos\psi}{3})\; x & +\; (a_1 b_2 + a_2 b_1)\; y & +\; (a_1 b_3 + a_3 b_1)\; z \\
138 > (a_2 b_1 + a_1 b_2)\; x & +\; 2(a_2 b_2 - \frac{cos\psi}{3})\; y & +\;  (a_2 b_3 + a_3 b_3)\; z \\
139 > (a_3 b_1 + a_3 b_2)\; x & +\;  (a_3 b_2 + a_2 b_3)\; y & +\; 2(a_3 b_3 - \frac{cos\psi}{3})\; z
140 > \end{array} \right),
141 > \label{eq:CE}
142 > \end{equation}
143 > while the gradient of the electric field in this form,
144 > \begin{equation}
145 > \mathsf{G} = \nabla\mathbf{E}
146 > = \frac{g_o}{2}\left(\begin{array}{ccc}
147 > 2(a_1\; b_1 - \frac{cos\psi}{3}) &  (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
148 > (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\
149 > (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
150 > \end{array} \right),
151 > \label{eq:GC}
152 > \end{equation}  
153 > is uniform over the entire space.  Therefore, to describe a uniform
154 > gradient in this notation, two unit vectors ($\mathbf{a}$ and
155 > $\mathbf{b}$) as well as a potential strength, $g_0$, must be
156 > specified. As expected, this requires five independent parameters.
157 >
158 > The common alternative to the Cartesian notation expresses the
159 > electrostatic potential using the notation of Morse and
160 > Feshbach,\cite{Morse:1946zr}
161   \begin{equation} \label{eq:quad_phi}
162 < \Phi(x,y,z) = - \left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2}
162 > \Phi(x,y,z) = -\left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2}
163   + 3 a_{21}^e \,xz + 3 a_{21}^o \,yz  
164 < + 6a_{22}^e \,xy +  3 a_{22}^o (x^2 - y^2) \right]  .
164 > + 6a_{22}^e \,xy +  3 a_{22}^o (x^2 - y^2) \right].
165   \end{equation}
166   Here we use the standard $(l,m)$ form for the $a_{lm}$ coefficients,
167   with superscript $e$ and $o$ denoting even and odd, respectively.
168   This form makes the functional analogy to ``d'' atomic states
169 < apparent. The gradient of the electric field in this form is:
169 > apparent.
170 >
171 > Applying the gradient operator to Eq. (\ref{eq:quad_phi}) the electric
172 > field due to this potential,
173 > \begin{equation}
174 > \mathbf{E} = -\nabla \Phi
175 > = \left(\begin{array}{ccc}
176 > \left( 6a_{22}^o -a_{20} \right)\; x &+\; 6a_{22}^e\; y &+\; 3a_{21}^e\;  z  \\
177 > 6a_{22}^e\; x & -\; (a_{20} + 6a_{22}^o)\; y & +\; 3a_{21}^o\; z \\
178 > 3a_{21}^e\; x & +\; 3a_{21}^o\; y & +\; 2a_{20}\; z
179 > \end{array} \right),
180 > \label{eq:MFE}
181 > \end{equation}
182 > while the gradient of the electric field in this form is:
183   \begin{equation} \label{eq:grad_e2}
184   \mathsf{G} =
185   \begin{pmatrix}
# Line 128 | Line 188 | which can be factored as
188   3a_{21}^e  &  3a_{21}^o & 2a_{20} \\
189   \end{pmatrix} \\
190   \end{equation}
191 < which can be factored as
191 > which is also uniform over the entire space.  This form for the
192 > gradient can be factored as
193   \begin{gather}
194   \begin{aligned}
195   \mathsf{G}  = a_{20}
# Line 165 | Line 226 | symmetric traceless tensors of rank 2.  The trace corr
226   \label{eq:intro_tensors}
227   \end{gather}
228   The five matrices in the expression above represent five different
229 < symmetric traceless tensors of rank 2.  The trace corresponds to
169 < $\nabla \cdot \mathbf{E} = 0$, consistent with being in a charge-free
170 < region.  Using the Cartesian notation of
171 < Eq. (\ref{eq:appliedPotential}), this tensor is written:
172 < \begin{equation}
173 < \mathsf{G} =\nabla\bf{E}
174 < = \frac{g_o}{2}\left(\begin{array}{ccc}
175 < 2(a_1\; b_1 - \frac{cos\psi}{3}) &  (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
176 < (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\
177 < (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
178 < \end{array} \right).
179 < \label{eq:GC}
180 < \end{equation}
229 > symmetric traceless tensors of rank 2.
230  
231 < It is useful to find vectors $\mathbf a$ and $\mathbf b$ that generate
232 < the five types of tensors shown in Eq. (\ref{eq:intro_tensors}).  If
233 < the two vectors are co-linear, e.g., $\psi=0$, $\mathbf{a}=(0,0,1)$ and
234 < $\mathbf{b}=(0,0,1)$, then
231 > It is useful to find the Cartesian vectors $\mathbf a$ and $\mathbf b$
232 > that generate the five types of tensors shown in
233 > Eq. (\ref{eq:intro_tensors}).  If the two vectors are co-linear, e.g.,
234 > $\psi=0$, $\mathbf{a}=(0,0,1)$ and $\mathbf{b}=(0,0,1)$, then
235   \begin{equation*}
236   \mathsf{G} = \frac{g_0}{3}
237   \begin{pmatrix}
# Line 216 | Line 265 | Using Eq. (\ref{eq:quad_phi}) the electric field is wr
265   \end{equation*}
266   The pattern is straightforward to continue for the other symmetries.
267  
219 Using Eq. (\ref{eq:quad_phi}) the electric field is written:
220 \begin{equation}
221 \mathbf{E}
222 = \left(\begin{array}{ccc}
223 \left(-a_{20} + 6a_{22}^o \right) x + 6a_{22}^e y + 3a_{21}^e  z  \\
224 6a_{22}^e x+(-a_{20} - 6a_{22}^o) y + 3a_{21}^e z \\
225 3a_{21}^e x +3a_{21}^o y + 2a_{20} z
226 \end{array} \right).
227 \label{eq:MFE}
228 \end{equation}
229 while using Eq. (\ref{eq:appliedPotential}), we find:
230 \begin{equation}
231 \mathbf{E}
232 =\frac{g_o}{2} \left(\begin{array}{ccc}
233 2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+  (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
234 (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y +  (a_2\; b_3 \;+ a_3\; b_3)\;z \\
235 (a_3\; b_1 \;+ a_3\; b_2)\;x +  (a_3\; b_2 \;+ a_2\; b_3)\;y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
236 \end{array} \right).
237 \label{eq:CE}
238 \end{equation}
268   We find the notation of Ref. \onlinecite{Torres-del-Castillo:2006uo}
269 < to be helpful when creating specific types of constant gradient
270 < electric fields in simulations. For this reason,
269 > helpful when creating specific types of constant gradient electric
270 > fields in simulations. For this reason,
271   Eqs. (\ref{eq:appliedPotential}), (\ref{eq:GC}), and (\ref{eq:CE}) are
272 < used in our code.
272 > implemented in our code.  In the simulations using constant applied
273 > gradients that are mentioned in the main text, we utilized a field
274 > with the $a_{22}^e$ symmetry using vectors, $\mathbf{a}= (1, 0, 0)$
275 > and $\mathbf{b} = (0,1,0)$.
276  
277   \section{Point-multipolar interactions with a spatially-varying electric field}
278  
# Line 259 | Line 291 | tensors are given using Green indices, using the Einst
291   \end{align}
292   where $\mathbf{r}_k$ is the local coordinate system for the object
293   (usually the center of mass of object $a$).  Components of vectors and
294 < tensors are given using Green indices, using the Einstein repeated
295 < summation notation. Note that the definition of the primitive
296 < quadrupole here differs from the standard traceless form, and contains
297 < an additional Taylor-series based factor of $1/2$.  In Ref.
298 < \onlinecite{PaperI}, we derived the forces and torques each object
299 < exerts on the other objects in the system.
294 > tensors are given using the Einstein repeated summation notation. Note
295 > that the definition of the primitive quadrupole here differs from the
296 > standard traceless form, and contains an additional Taylor-series
297 > based factor of $1/2$. In Ref.  \onlinecite{PaperI}, we derived the
298 > forces and torques each object exerts on the other objects in the
299 > system.
300  
301   Here we must also consider an external electric field that varies in
302   space: $\mathbf E(\mathbf r)$.  Each of the local charges $q_k$ in
# Line 277 | Line 309 | Note that once one shrinks object $a$ to point size, t
309   + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0}  r_{k \delta}
310   r_{k \varepsilon} + ...
311   \end{equation}
312 < Note that once one shrinks object $a$ to point size, the ${E}_\gamma$
313 < terms are all evaluated at the center of the object (now a
314 < point). Thus later the ${E}_\gamma$ terms can be written using the
315 < same global origin for all objects $a, b, c, ...$ in the system. The
316 < force exerted on object $a$ by the electric field is given by,
285 <
312 > Note that if one shrinks object $a$ to a single point, the
313 > ${E}_\gamma$ terms are all evaluated at the center of the object (now
314 > a point). Thus later the ${E}_\gamma$ terms can be written using the
315 > same (molecular) origin for all point charges in the object. The force
316 > exerted on object $a$ by the electric field is given by,
317   \begin{align}
318   F^a_\gamma = \sum_{k \textrm{~in~} a} E_\gamma(\mathbf{r}_k) &=  \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
319   + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
# Line 291 | Line 322 | Thus in terms of the global origin $\mathbf{r}$, ${F}_
322   + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
323   ...
324   \end{align}
325 < Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
325 > Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
326    
327   Similarly, the torque exerted by the field on $a$ can be expressed as
328   \begin{align}
# Line 323 | Line 354 | The results has been summarized in Table I.
354   \begin{equation}
355   U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ...
356   \end{equation}
357 < The results has been summarized in Table I.
357 > These results have been summarized in Table \ref{tab:UFT}.
358  
359   \begin{table}
360   \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
361 <  $(\mathbf{\tau})$ expressions for a multipolar site $\mathrm{r}$ in an
362 <  electric field, $\mathbf{E}(\mathbf{r})$.
363 < \label{tab:UFT}}
364 < \begin{tabular}{r|ccc}
361 >  $(\mathbf{\tau})$ expressions for a multipolar site at $\mathbf{r}$ in an
362 >  electric field, $\mathbf{E}(\mathbf{r})$ using the definitions of the multipoles in Eqs. (\ref{eq:charge}), (\ref{eq:dipole}) and (\ref{eq:quadrupole}).  
363 >  \label{tab:UFT}}
364 > \begin{tabular}{r|C{3cm}C{3cm}C{3cm}}
365    & Charge & Dipole & Quadrupole \\ \hline
366   $U(\mathbf{r})$ &  $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
367   $\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ &  $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
# Line 338 | Line 369 | $\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \ma
369   \end{tabular}
370   \end{table}
371  
341
372   \section{Boltzmann averages for orientational polarization}
373 < The dielectric properties of the system is mainly arise from two
373 > The dielectric properties of the system  mainly arise from two
374   different ways: i) the applied field distort the charge distributions
375   so it produces an induced multipolar moment in each molecule; and ii)
376   the applied field tends to line up originally randomly oriented
# Line 412 | Line 442 | the body fixed co-ordinates to the space co-ordinates,
442   \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)},
443   \end{equation}
444   where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms
445 < the body fixed co-ordinates to the space co-ordinates,
446 < \[\eta_{\alpha\alpha'}
447 < = \left(\begin{array}{ccc}
448 < cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
449 < cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
450 < sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
451 < \end{array} \right).\]
445 > the body fixed co-ordinates to the space co-ordinates.
446 > % \[\eta_{\alpha\alpha'}
447 > % = \left(\begin{array}{ccc}
448 > % cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
449 > % cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
450 > % sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
451 > % \end{array} \right).\]
452 >
453   Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
454   and $8 \pi^2 /3\;{\nabla}.\mathbf{E}\; Tr(q^*) $ respectively. The
455   second term vanishes for charge free space, ${\nabla}.\mathbf{E} \; = \; 0$. Similarly integration of the
# Line 437 | Line 468 | where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a
468   where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupole polarizablity  and  ${\bar{q_o}}^2=
469   3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule.
470  
440 % \section{External application of a uniform field gradient}
441 % \label{Ap:fieldOrGradient}
442
443 % To satisfy the condition $ \nabla \cdot \mathbf{E} = 0 $, within the box of molecules we have taken electrostatic potential in the following form
444 % \begin{equation}
445 % \begin{split}
446 % \phi(x, y, z) =\; &-g_o \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
447 % & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z +  \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right),
448 % \end{split}
449 % \label{eq:appliedPotential}
450 % \end{equation}
451 % where $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ are basis vectors  determine coefficients in x, y, and z direction. And $g_o$ and $\psi$ are overall strength of the potential and angle between basis vectors respectively. The electric field derived from the above potential is,
452 % \[\mathbf{E}
453 % = \frac{g_o}{2} \left(\begin{array}{ccc}
454 % 2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+  (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
455 %  (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y +  (a_2\; b_3 \;+ a_3\; b_2)\;z \\
456 % (a_3\; b_1 \;+ a_3\; b_2)\;x +  (a_3\; b_2 \;+ a_2\; b_3)y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
457 % \end{array} \right).\]
458 % The gradient of the applied field derived from the potential can be written in the following form,
459 % \[\nabla\mathbf{E}
460 % = \frac{g_o}{2}\left(\begin{array}{ccc}
461 % 2(a_1\; b_1 - \frac{cos\psi}{3}) &  (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
462 %  (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_2) \\
463 % (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
464 % \end{array} \right).\]
465
466
467
471   \section{Gradient of the field due to quadrupolar polarization}
472   \label{singularQuad}
473   In this section, we will discuss the gradient of the field produced by
# Line 566 | Line 569 | sphere.
569   polarization produces zero net gradient of the field inside the
570   sphere.
571  
572 + \section{Geometric Factors for Two Embedded Point Charges}
573  
574   \bibliography{dielectric_new}
575   \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines