ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Dielectric_Supplemental.tex
(Generate patch)

Comparing trunk/multipole/Dielectric_Supplemental.tex (file contents):
Revision 4399 by gezelter, Thu Mar 24 20:05:30 2016 UTC vs.
Revision 4419 by gezelter, Tue Apr 12 20:03:08 2016 UTC

# Line 35 | Line 35 | jcp]{revtex4-1}
35   \usepackage[version=3]{mhchem}  % this is a great package for formatting chemical reactions
36   \usepackage{url}
37   \usepackage{rotating}
38 + \usepackage{braket}
39 + \usepackage{array}
40 + \newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
41 + \newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
42 + \newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
43  
44 +
45 +
46   %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
47   %\linenumbers\relax % Commence numbering lines
48  
49   \begin{document}
50  
51 < \title[Real space electrostatics for multipoles. III. Dielectric Properties]
52 < {Supplemental Material for: Real space electrostatics for multipoles. III. Dielectric Properties}
51 > \title{Supplemental Material for: Real space electrostatics for
52 >  multipoles. III. Dielectric Properties}
53  
54   \author{Madan Lamichhane}
55   \affiliation{Department of Physics, University
# Line 61 | Line 68 | of Notre Dame, Notre Dame, IN 46556}
68   \date{\today}% It is always \today, today,
69               %  but any date may be explicitly specified
70  
71 + \begin{abstract}
72 +  This document includes useful relationships for computing the
73 +  interactions between fields and field gradients and point multipolar
74 +  representations of molecular electrostatics. We also provide
75 +  explanatory derivations of a number of relationships used in the
76 +  main text. This includes the Boltzmann averages of quadrupole
77 +  orientations, and the interaction of a quadrupole density with the
78 +  self-generated field gradient. This last relationship is assumed to
79 +  be zero in the main text but is explicitly shown to be zero here.
80 + \end{abstract}
81 +
82   \maketitle
83  
84 < \newpage
84 > \section{Generating Uniform Field Gradients}
85 > One important task in carrying out the simulations mentioned in the
86 > main text was to generate uniform electric field gradients.  To do
87 > this, we relied heavily on both the notation and results from Torres
88 > del Castillo and Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo}
89 > In this work, tensors were expressed in Cartesian components, using at
90 > times a dyadic notation. This proves quite useful for computer
91 > simulations that make use of toroidal boundary conditions.
92  
93 < \section{Boltzmann averages for orientational polarization}
94 < The dielectric properties of the system is mainly arise from two
95 < different ways: i) the applied field distort the charge distributions
96 < so it produces an induced multipolar moment in each molecule; and ii)
97 < the applied field tends to line up originally randomly oriented
98 < molecular moment towards the direction of the applied field. In this
74 < study, we basically focus on the orientational contribution in the
75 < dielectric properties. If we consider a system of molecules in the
76 < presence of external field perturbation, the perturbation experienced
77 < by any molecule will not be only due to external field or field
78 < gradient but also due to the field or field gradient produced by the
79 < all other molecules in the system. In the following subsections
80 < \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad},
81 < we will discuss about the molecular polarization only due to external
82 < field perturbation. The contribution of the field or field gradient
83 < due to all other molecules will be taken into account while
84 < calculating correction factor in the section \ref{sec:corrFactor}.
93 > An alternative formalism uses the theory of angular momentum and
94 > spherical harmonics and is common in standard physics texts such as
95 > Jackson,\cite{Jackson98} Morse and Feshbach,\cite{Morse:1946zr} and
96 > Stone.\cite{Stone:1997ly} Because this approach has its own
97 > advantages, relationships are provided below comparing that
98 > terminology to the Cartesian tensor notation.
99  
100 < \subsection{Dipoles}
101 < \label{subsec:boltzAverage-Dipole}
102 < Consider a system of molecules, each with permanent dipole moment
103 < $p_o$. In the absense of external field, thermal agitation orients the
104 < dipoles randomly, reducing the system moment to zero.  External fields
105 < will tend to line up the dipoles in the direction of applied field.
106 < Here we have considered net field from all other molecules is
107 < considered to be zero.  Therefore the total Hamiltonian of each
108 < molecule is,\cite{Jackson98}
100 > The gradient of the electric field,
101 > \begin{equation*}
102 > \mathsf{G}(\mathbf{r}) = -\nabla \nabla \Phi(\mathbf{r}),
103 > \end{equation*}
104 > where $\Phi(\mathbf{r})$ is the electrostatic potential.  In a
105 > charge-free region of space, $\nabla \cdot \mathbf{E}=0$, and
106 > $\mathsf{G}$ is a symmetric traceless tensor.  From symmetry
107 > arguments, we know that this tensor can be written in terms of just
108 > five independent components.
109 >
110 > Following Torres del Castillo and Mend\'{e}z Garido's notation, the
111 > gradient of the electric field may also be written in terms of two
112 > vectors $\mathbf{a}$ and $\mathbf{b}$,
113 > \begin{equation*}
114 > G_{ij}=\frac{1}{2} (a_i b_j + a_j b_i) - \frac{1}{3}(\mathbf a \cdot \mathbf b) \delta_{ij} .
115 > \end{equation*}
116 > If the vectors $\mathbf{a}$ and $\mathbf{b}$ are unit vectors, the
117 > electrostatic potential that generates a uniform gradient may be
118 > written:
119 > \begin{align}
120 > \Phi(x, y, z) =\; -\frac{g_o}{2} & \left(\left(a_1b_1 -
121 >                         \frac{cos\psi}{3}\right)\;x^2+\left(a_2b_2
122 >                         - \frac{cos\psi}{3}\right)\;y^2 +
123 >                         \left(a_3b_3 -
124 >                         \frac{cos\psi}{3}\right)\;z^2 \right. \nonumber \\
125 > & + (a_1b_2 + a_2b_1)\; xy + (a_1b_3 + a_3b_1)\; xz + (a_2b_3 + a_3b_2)\; yz \bigg) .
126 > \label{eq:appliedPotential}
127 > \end{align}
128 > Note $\mathbf{a}\cdot\mathbf{a} = \mathbf{b} \cdot \mathbf{b} = 1$,
129 > $\mathbf{a} \cdot \mathbf{b}=\cos \psi$, and $g_0$ is the overall
130 > strength of the potential.
131 >
132 > Taking the gradient of Eq. (\ref{eq:appliedPotential}), we find the
133 > field due to this potential,
134   \begin{equation}
135 < H = H_o - \bf{p_o} .\bf{E},
135 > \mathbf{E} = -\nabla \Phi
136 > =\frac{g_o}{2} \left(\begin{array}{ccc}
137 > 2(a_1 b_1 - \frac{cos\psi}{3})\; x & +\; (a_1 b_2 + a_2 b_1)\; y & +\; (a_1 b_3 + a_3 b_1)\; z \\
138 > (a_2 b_1 + a_1 b_2)\; x & +\; 2(a_2 b_2 - \frac{cos\psi}{3})\; y & +\;  (a_2 b_3 + a_3 b_3)\; z \\
139 > (a_3 b_1 + a_3 b_2)\; x & +\;  (a_3 b_2 + a_2 b_3)\; y & +\; 2(a_3 b_3 - \frac{cos\psi}{3})\; z
140 > \end{array} \right),
141 > \label{eq:CE}
142 > \end{equation}
143 > while the gradient of the electric field in this form,
144 > \begin{equation}
145 > \mathsf{G} = \nabla\mathbf{E}
146 > = \frac{g_o}{2}\left(\begin{array}{ccc}
147 > 2(a_1\; b_1 - \frac{cos\psi}{3}) &  (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
148 > (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\
149 > (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
150 > \end{array} \right),
151 > \label{eq:GC}
152 > \end{equation}  
153 > is uniform over the entire space.  Therefore, to describe a uniform
154 > gradient in this notation, two unit vectors ($\mathbf{a}$ and
155 > $\mathbf{b}$) as well as a potential strength, $g_0$, must be
156 > specified. As expected, this requires five independent parameters.
157 >
158 > The common alternative to the Cartesian notation expresses the
159 > electrostatic potential using the notation of Morse and
160 > Feshbach,\cite{Morse:1946zr}
161 > \begin{equation} \label{eq:quad_phi}
162 > \Phi(x,y,z) = -\left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2}
163 > + 3 a_{21}^e \,xz + 3 a_{21}^o \,yz  
164 > + 6a_{22}^e \,xy +  3 a_{22}^o (x^2 - y^2) \right].
165   \end{equation}
166 < where $H_o$ is a function of the internal coordinates of the molecule.
167 < The Boltzmann average of the dipole moment is given by,
166 > Here we use the standard $(l,m)$ form for the $a_{lm}$ coefficients,
167 > with superscript $e$ and $o$ denoting even and odd, respectively.
168 > This form makes the functional analogy to ``d'' atomic states
169 > apparent.
170 >
171 > Applying the gradient operator to Eq. (\ref{eq:quad_phi}) the electric
172 > field due to this potential,
173   \begin{equation}
174 < \braket{p_{mol}} = \frac{\displaystyle\int d\Omega\; p_o\; cos\theta\;  e^{\frac{p_oE\; cos\theta}{k_B T}}}{\displaystyle\int d\Omega\; e^{\frac{p_oE\;cos\theta}{k_B T}}},
174 > \mathbf{E} = -\nabla \Phi
175 > = \left(\begin{array}{ccc}
176 > \left( 6a_{22}^o -a_{20} \right)\; x &+\; 6a_{22}^e\; y &+\; 3a_{21}^e\;  z  \\
177 > 6a_{22}^e\; x & -\; (a_{20} + 6a_{22}^o)\; y & +\; 3a_{21}^o\; z \\
178 > 3a_{21}^e\; x & +\; 3a_{21}^o\; y & +\; 2a_{20}\; z
179 > \end{array} \right),
180 > \label{eq:MFE}
181   \end{equation}
182 < where $\bf{E}$ is selected along z-axis. If we consider that the
183 < applied field is small, \textit{i.e.} $\frac{p_oE\; cos\theta}{k_B T} << 1$,
182 > while the gradient of the electric field in this form is:
183 > \begin{equation} \label{eq:grad_e2}
184 > \mathsf{G} =
185 > \begin{pmatrix}
186 > 6 a_{22}^o - a_{20} & 6a_{22}^e & 3a_{21}^e\\
187 > 6a_{22}^e & -(a_{20}+6a_{22}^o) & 3a_{21}^o \\
188 > 3a_{21}^e  &  3a_{21}^o & 2a_{20} \\
189 > \end{pmatrix} \\
190 > \end{equation}
191 > which is also uniform over the entire space.  This form for the
192 > gradient can be factored as
193 > \begin{gather}
194 > \begin{aligned}
195 > \mathsf{G}  = a_{20}
196 > \begin{pmatrix}
197 > -1 & 0 & 0\\
198 > 0 & -1 & 0\\
199 > 0 & 0 & 2\\
200 > \end{pmatrix}
201 > +3a_{21}^e
202 > \begin{pmatrix}
203 > 0 & 0 & 1\\
204 > 0 & 0 & 0\\
205 > 1 & 0 & 0\\
206 > \end{pmatrix}
207 > +3a_{21}^o
208 > \begin{pmatrix}
209 > 0 & 0 & 0\\
210 > 0 & 0 & 1\\
211 > 0 & 1 & 0\\
212 > \end{pmatrix}
213 > +6a_{22}^e
214 > \begin{pmatrix}
215 > 0 & 1 & 0\\
216 > 1 & 0 & 0\\
217 > 0 & 0 & 0\\
218 > \end{pmatrix}
219 > +6a_{22}^o
220 > \begin{pmatrix}
221 > 1 & 0 & 0\\
222 > 0 & -1 & 0\\
223 > 0 & 0 & 0\\
224 > \end{pmatrix}
225 > \end{aligned}
226 > \label{eq:intro_tensors}
227 > \end{gather}
228 > The five matrices in the expression above represent five different
229 > symmetric traceless tensors of rank 2.
230 >
231 > It is useful to find the Cartesian vectors $\mathbf a$ and $\mathbf b$
232 > that generate the five types of tensors shown in
233 > Eq. (\ref{eq:intro_tensors}).  If the two vectors are co-linear, e.g.,
234 > $\psi=0$, $\mathbf{a}=(0,0,1)$ and $\mathbf{b}=(0,0,1)$, then
235 > \begin{equation*}
236 > \mathsf{G} = \frac{g_0}{3}
237 > \begin{pmatrix}
238 > -1 & 0 & 0 \\
239 > 0 & -1 & 0 \\
240 > 0 & 0 & 2 \\
241 > \end{pmatrix} ,
242 > \end{equation*}
243 > which is the $a_{20}$ symmetry.
244 > To generate the $a_{22}^o$ symmetry, we take:
245 > $\mathbf{a}= (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},0)$ and
246 > $\mathbf{b}=(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}},0)$
247 > and find:
248 > \begin{equation*}
249 > \mathsf{G}=\frac{g_0}{2}
250 > \begin{pmatrix}
251 > 1 & 0 & 0 \\
252 > 0 & -1 & 0 \\
253 > 0 & 0 & 0 \\
254 > \end{pmatrix} .
255 > \end{equation*}
256 > To generate the $a_{22}^e$ symmetry, we take:
257 > $\mathbf{a}= (1, 0, 0)$ and $\mathbf{b} = (0,1,0)$ and find:
258 > \begin{equation*}
259 > \mathsf{G}=\frac{g_0}{2}
260 > \begin{pmatrix}
261 > 0 & 1 & 0 \\
262 > 1 & 0 & 0 \\
263 > 0 & 0 & 0 \\
264 > \end{pmatrix} .
265 > \end{equation*}
266 > The pattern is straightforward to continue for the other symmetries.
267 >
268 > We find the notation of Ref. \onlinecite{Torres-del-Castillo:2006uo}
269 > helpful when creating specific types of constant gradient electric
270 > fields in simulations. For this reason,
271 > Eqs. (\ref{eq:appliedPotential}), (\ref{eq:GC}), and (\ref{eq:CE}) are
272 > implemented in our code.  In the simulations using constant applied
273 > gradients that are mentioned in the main text, we utilized a field
274 > with the $a_{22}^e$ symmetry using vectors, $\mathbf{a}= (1, 0, 0)$
275 > and $\mathbf{b} = (0,1,0)$.
276 >
277 > \section{Point-multipolar interactions with a spatially-varying electric field}
278 >
279 > This section develops formulas for the force and torque exerted by an
280 > external electric field, $\mathbf{E}(\mathbf{r})$, on object
281 > $a$. Object $a$ has an embedded collection of charges and in
282 > simulations will represent a molecule, ion, or a coarse-grained
283 > substructure. We describe the charge distributions using primitive
284 > multipoles defined in Ref. \onlinecite{PaperI} by
285 > \begin{align}
286 > C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
287 > D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
288 > Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in }  a} q_k
289 > r_{k\alpha}  r_{k\beta},
290 > \label{eq:quadrupole}
291 > \end{align}
292 > where $\mathbf{r}_k$ is the local coordinate system for the object
293 > (usually the center of mass of object $a$).  Components of vectors and
294 > tensors are given using the Einstein repeated summation notation. Note
295 > that the definition of the primitive quadrupole here differs from the
296 > standard traceless form, and contains an additional Taylor-series
297 > based factor of $1/2$. In Ref.  \onlinecite{PaperI}, we derived the
298 > forces and torques each object exerts on the other objects in the
299 > system.
300 >
301 > Here we must also consider an external electric field that varies in
302 > space: $\mathbf E(\mathbf r)$.  Each of the local charges $q_k$ in
303 > object $a$ will then experience a slightly different field.  This
304 > electric field can be expanded in a Taylor series around the local
305 > origin of each object. For a particular charge $q_k$, the electric
306 > field at that site's position is given by:
307   \begin{equation}
308 < \braket{p_{mol}}  \approx \frac{1}{3}\frac{{p_o}^2}{k_B T}E,
308 > \mathbf{E}(\mathbf{r}_k) = E_\gamma|_{\mathbf{r}_k = 0} + \nabla_\delta E_\gamma |_{\mathbf{r}_k = 0}  r_{k \delta}
309 > + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0}  r_{k \delta}
310 > r_{k \varepsilon} + ...
311   \end{equation}
312 < where $ \alpha_p = \frac{1}{3}\frac{{p_o}^2}{k_B T}$ is a molecular
312 > Note that if one shrinks object $a$ to a single point, the
313 > ${E}_\gamma$ terms are all evaluated at the center of the object (now
314 > a point). Thus later the ${E}_\gamma$ terms can be written using the
315 > same (molecular) origin for all point charges in the object. The force
316 > exerted on object $a$ by the electric field is given by,\cite{Raab:2004ve}
317 > \begin{align}
318 > F^a_\gamma = \sum_{k \textrm{~in~} a} E_\gamma(\mathbf{r}_k) &=  \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
319 > + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
320 > r_{k \varepsilon} + ...  \rbrace  \\
321 > &= C_a E_\gamma + D_{a  \delta} \nabla_\delta E_\gamma
322 > + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
323 > ...
324 > \end{align}
325 > Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
326 >  
327 > Similarly, the torque exerted by the field on $a$ can be expressed as
328 > \begin{align}
329 > \tau^a_\alpha &=  \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
330 > & =  \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
331 > r_{k\beta} E_\gamma(\mathbf r_k) \\
332 > & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
333 > + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
334 > E_\gamma + ...
335 > \end{align}
336 > We note that the Levi-Civita symbol can be eliminated by utilizing the matrix cross product as defined in Ref. \onlinecite{Smith98}:
337 > \begin{equation}
338 > \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
339 > \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
340 >  -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
341 > \right]
342 > \label{eq:matrixCross}
343 > \end{equation}
344 > where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
345 > the matrix indices. Finally, the interaction energy $U^a$ of object $a$ with the external field is given by,
346 > \begin{equation}
347 > U^a = \sum_{k~in~a} q_k \phi_k (\mathrm{r}_k)
348 > \end{equation}
349 > Performing another Taylor series expansion about the local body origin,
350 > \begin{equation}
351 > \phi({\mathbf{r}_k}) = \phi|_{\mathbf{r}_k = 0 } + r_{k \alpha} \nabla_\alpha \phi_\alpha|_{\mathbf{r}_k = 0 } + \frac{1}{2} r_{k\alpha}r_{k\beta}\nabla_\alpha \nabla_\beta \phi|_{\mathbf{r}_k = 0} + ...
352 > \end{equation}
353 > Writing this in terms of the global origin $\mathrm{r}$, we find
354 > \begin{equation}
355 > U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ...
356 > \end{equation}
357 > These results have been summarized in Table \ref{tab:UFT}.
358 >
359 > \begin{table}
360 > \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
361 >  $(\mathbf{\tau})$ expressions for a multipolar site at $\mathbf{r}$ in an
362 >  electric field, $\mathbf{E}(\mathbf{r})$ using the definitions of the multipoles in Eqs. (\ref{eq:charge}), (\ref{eq:dipole}) and (\ref{eq:quadrupole}).  
363 >  \label{tab:UFT}}
364 > \begin{tabular}{r|C{3cm}C{3cm}C{3cm}}
365 >  & Charge & Dipole & Quadrupole \\ \hline
366 > $U(\mathbf{r})$ &  $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
367 > $\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ &  $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
368 > $\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
369 > \end{tabular}
370 > \end{table}
371 >
372 > \section{Boltzmann averages for orientational polarization}
373 > If we consider a collection of molecules in the presence of external
374 > field, the perturbation experienced by any one molecule will include
375 > contributions to the field or field gradient produced by the all other
376 > molecules in the system. In subsections
377 > \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad},
378 > we discuss the molecular polarization due solely to external field
379 > perturbations.  This illustrates the origins of the polarizability
380 > equations (Eqs. 6, 20, and 21) in the main text.
381 >
382 > \subsection{Dipoles}
383 > \label{subsec:boltzAverage-Dipole}
384 > Consider a system of molecules, each with permanent dipole moment
385 > $p_o$. In the absense of an external field, thermal agitation orients
386 > the dipoles randomly, and the system moment, $\mathbf{P}$, is zero.
387 > External fields will line up the dipoles in the direction of applied
388 > field.  Here we consider the net field from all other molecules to be
389 > zero.  Therefore the total Hamiltonian acting on each molecule
390 > is,\cite{Jackson98}
391 > \begin{equation}
392 > H = H_o - \mathbf{p}_o \cdot \mathbf{E},
393 > \end{equation}
394 > where $H_o$ is a function of the internal coordinates of the molecule.
395 > The Boltzmann average of the dipole moment in the direction of the
396 > field is given by,
397 > \begin{equation}
398 > \langle p_{mol} \rangle = \frac{\displaystyle\int p_o \cos\theta
399 >  e^{~p_o E \cos\theta /k_B T}\; d\Omega}{\displaystyle\int  e^{~p_o E \cos\theta/k_B
400 >    T}\; d\Omega},
401 > \end{equation}
402 > where the $z$-axis is taken in the direction of the applied field,
403 > $\bf{E}$ and
404 > $\int d\Omega = \int_0^\pi \sin\theta\; d\theta \int_0^{2\pi} d\phi
405 > \int_0^{2\pi} d\psi$
406 > is an integration over Euler angles describing the orientation of the
407 > molecule.
408 >
409 > If the external fields are small, \textit{i.e.}
410 > $p_oE \cos\theta / k_B T << 1$,
411 > \begin{equation}
412 > \langle p_{mol} \rangle \approx \frac{{p_o}^2}{3 k_B T}E,
413 > \end{equation}
414 > where $ \alpha_p = \frac{{p_o}^2}{3 k_B T}$ is the molecular
415   polarizability. The orientational polarization depends inversely on
416 < the temperature and applied field must overcome the thermal agitation.
416 > the temperature as the applied field must overcome thermal agitation
417 > to orient the dipoles.
418  
419   \subsection{Quadrupoles}
420   \label{subsec:boltzAverage-Quad}
421 < Consider a system of molecules with permanent quadrupole moment
422 < $q_{\alpha\beta} $. The average quadrupole moment at temperature T in
423 < the presence of uniform applied field gradient is given
424 < by,\cite{AduGyamfi78, AduGyamfi81}
421 > If instead, our system consists of molecules with permanent
422 > \textit{quadrupole} tensor $q_{\alpha\beta}$. The average quadrupole
423 > at temperature $T$ in the presence of uniform applied field gradient
424 > is given by,\cite{AduGyamfi78, AduGyamfi81}
425   \begin{equation}
426 < \braket{q_{\alpha\beta}} \;=\; \frac{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}} \;=\; \frac{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
426 > \langle q_{\alpha\beta} \rangle \;=\; \frac{\displaystyle\int
427 >  q_{\alpha\beta}\; e^{-H/k_B T}\; d\Omega}{\displaystyle\int
428 >  e^{-H/k_B T}\; d\Omega} \;=\; \frac{\displaystyle\int
429 >  q_{\alpha\beta}\; e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B T}\;
430 >  d\Omega}{\displaystyle\int  e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B
431 >    T}\; d\Omega },
432   \label{boltzQuad}
433   \end{equation}
434 < where $\int d\Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
435 < sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
436 < angles, $ H = H_o -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
437 < a quadrupole in the gradient of the  
438 < applied field and $ H_o$ is a function of internal coordinates of the molecule. The energy and quadrupole moment can be transformed into body frame using following relation,
434 > where $H = H_o - q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of a
435 > quadrupole in the gradient of the applied field and $H_o$ is a
436 > function of internal coordinates of the molecule. The energy and
437 > quadrupole moment can be transformed into the body frame using a
438 > rotation matrix $\mathsf{\eta}^{-1}$,
439 > \begin{align}
440 > q_{\alpha\beta} &= \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
441 > H &= H_o - q:{\nabla}\mathbf{E} \\
442 >  &= H_o - q_{\mu\nu}\;\partial_\nu E_\mu  \\
443 >  &= H_o
444 >    -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu
445 >    E_\mu. \label{energyQuad}
446 > \end{align}
447 > Here the starred tensors are the components in the body fixed
448 > frame. Substituting equation (\ref{energyQuad}) in the equation
449 > (\ref{boltzQuad}) and taking linear terms in the expansion we obtain,
450   \begin{equation}
451 + \braket{q_{\alpha\beta}} = \frac{\displaystyle \int q_{\alpha\beta} \left(1 +
452 +    \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu
453 +      E_\mu }{k_B T}\right)\;  d\Omega}{\displaystyle \int \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)\; d\Omega}.
454 + \end{equation}
455 + Recall that $\eta_{\alpha\alpha'}$ is the inverse of the rotation
456 + matrix that transforms the body fixed co-ordinates to the space
457 + co-ordinates.
458 + % \[\eta_{\alpha\alpha'}
459 + % = \left(\begin{array}{ccc}
460 + % cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
461 + % cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
462 + % sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
463 + % \end{array} \right).\]
464 +
465 + Integration of the first and second terms in the denominator gives
466 + $8 \pi^2$ and
467 + $8 \pi^2 ({\nabla} \cdot \mathbf{E}) \mathrm{Tr}(q^*) / 3 $
468 + respectively. The second term vanishes for charge free space (where
469 + ${\nabla} \cdot \mathbf{E}=0$). Similarly, integration of the first
470 + term in the numerator produces
471 + $8 \pi^2 \delta_{\alpha\beta} \mathrm{Tr}(q^*) / 3$ while the second
472 + produces
473 + $8 \pi^2 (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
474 + {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta /
475 + 15 k_B T $.
476 + Therefore the Boltzmann average of a quadrupole moment can be written
477 + as,
478 + \begin{equation}
479 + \langle q_{\alpha\beta} \rangle =  \frac{1}{3} \mathrm{Tr}(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
480 + \end{equation}
481 + where $\alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular
482 + quadrupole polarizablity and
483 + ${\bar{q_o}}^2=
484 + 3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$
485 + is the square of the net quadrupole moment of a molecule.
486 +
487 + \section{Gradient of the field due to quadrupolar polarization}
488 + \label{singularQuad}
489 + In section IV.C of the main text, we stated that for quadrupolar
490 + fluids, the self-contribution to the field gradient vanishes at the
491 + singularity. In this section, we prove this statement.  For this
492 + purpose, we consider a distribution of charge $\rho(\mathbf{r})$ which
493 + gives rise to an electric field $\mathbf{E}(\mathbf{r})$ and gradient
494 + of the field $\nabla\mathbf{E}(\mathbf{r})$ throughout space. The
495 + gradient of the electric field over volume due to the charges within
496 + the sphere of radius $R$ is given by (cf. Ref. \onlinecite{Jackson98},
497 + equation 4.14):
498 + \begin{equation}
499 + \int_{r<R} \nabla\mathbf{E} d\mathbf{r} = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega
500 + \label{eq:8}
501 + \end{equation}
502 + where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
503 + of the surface of the sphere,
504 + \begin{equation}
505 + \hat{n} = \sin\theta\cos\phi\; \hat{x} + \sin\theta\sin\phi\; \hat{y} +
506 + \cos\theta\; \hat{z}
507 + \end{equation}
508 + in spherical coordinates.  For the charge density $\rho(\mathbf{r}')$, the
509 + total gradient of the electric field can be written as,\cite{Jackson98}
510 + \begin{equation}
511 + \int_{r<R} {\nabla}\mathbf {E}\; d\mathbf{r}=-\int_{r=R} R^2\; {\nabla}\Phi\; \hat{n}\; d\Omega  =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int \frac{\rho(\mathbf r')}{|\mathbf{r}-\mathbf{r}'|}\;d\mathbf{r}'\right) \hat{n}\; d\Omega
512 + \label{eq:9}
513 + \end{equation}
514 + The radial function in the equation (\ref{eq:9}) can be expressed in
515 + terms of spherical harmonics as,\cite{Jackson98}
516 + \begin{equation}
517 + \frac{1}{|\mathbf{r} - \mathbf{r}'|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
518 + \label{eq:10}
519 + \end{equation}
520 + If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
521 + \begin{equation}
522   \begin{split}
523 < &q_{\alpha\beta} = \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
524 < &H = H_o - q:\vec{\nabla}\vec{E} = H_o - q_{\mu\nu}\;\partial_\nu E_\mu = H_o -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu.
523 > \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d\mathbf{r}'\right) \hat{n}\; d\Omega \\
524 > &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d\mathbf{r}
525 > '
526   \end{split}
527 < \label{energyQuad}
527 > \label{eq:11}
528 > \end{equation}
529 > The gradient of the product of radial function and spherical harmonics
530 > is given by:\cite{Arfkan}
531 > \begin{equation}
532 > \begin{split}
533 > {\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
534 > {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
535 > \end{split}
536 > \label{eq:12}
537   \end{equation}
538 < Here the starred tensors are the components in the body fixed
539 < frame. Substituting equation (\ref{energyQuad}) in the equation (\ref{boltzQuad})
136 < and taking linear terms in the expansion we get,
538 > where $Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical
539 > harmonic.\cite{Arfkan} Using equation (\ref{eq:12}) we get,
540   \begin{equation}
541 < \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)},
541 > {\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
542 > \label{eq:13}
543   \end{equation}
544 < where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms
545 < the body fixed co-ordinates to the space co-ordinates,
142 < \[\eta_{\alpha\alpha'}
143 < = \left(\begin{array}{ccc}
144 < cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
145 < cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
146 < sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
147 < \end{array} \right).\]
148 < Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
149 < and $8 \pi^2 /3\;\vec{\nabla}.\vec{E}\; Tr(q^*) $ respectively. The
150 < second term vanishes for charge free space
151 < (i.e. $\vec{\nabla}.\vec{E} \; = \; 0)$. Similarly integration of the
152 < 1st term in the numerator produces
153 < $8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
154 < $8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
155 < {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
156 < if $\vec{\nabla}.\vec{E} \; = \; 0$,
157 < $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
158 < ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
159 < Boltzmann average of a quadrupole moment can be written as,
160 <
544 > Using Clebsch-Gordan coefficients $C(l+1,1,l|m_1,m_2,m)$, the vector
545 > spherical harmonics can be written in terms of spherical harmonics,
546   \begin{equation}
547 < \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
547 > Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; Y_{l+1}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}.
548 > \label{eq:14}
549   \end{equation}
550 < where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupolarizablity  and  ${\bar{q_o}}^2=
551 < 3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule.
550 > Here $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
551 > in terms of Cartesian coordinates,
552 > \begin{equation}
553 > {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}.
554 > \label{eq:15}
555 > \end{equation}
556 > The normal vector $\hat{n} $ is then expressed in terms of spherical tensor of rank 1 as shown in below,
557 > \begin{equation}
558 > \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 - Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right).
559 > \label{eq:16}
560 > \end{equation}
561 > The surface integral of the product of $\hat{n}$ and
562 > $Y_{l+1}^{m_1}(\theta, \phi)$ gives,
563 > \begin{equation}
564 > \begin{split}
565 > \int \hat{n}\;Y_{l+1}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 -Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\
566 > &=  \int \sqrt{\frac{4\pi}{3}}\left({Y_1^{1}}^* {\hat{e}}_1 +{Y_1^{-1}}^* {\hat{e}}_{-1} + {Y_1^{0}}^* {\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\
567 > &=   \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
568 > \end{split}
569 > \label{eq:17}
570 > \end{equation}
571 > where $Y_{l}^{-m} = (-1)^m\;{Y_{l}^{m}}^* $ and
572 > $ \int {Y_{l}^{m}}^* Y_{l'}^{m'}\;d\Omega =
573 > \delta_{ll'}\delta_{mm'} $.
574 > Non-vanishing values of equation \ref{eq:17} require $l = 0$,
575 > therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
576 > 1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
577 > provided that $m = m_1 + m_2$.  Equation \ref{eq:11} can therefore be
578 > modified,
579 > \begin{equation}
580 > \begin{split}
581 > \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\  &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
582 > 1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d\mathbf{r}' \\
583 > &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d\mathbf{r}'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
584 > &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_\mathrm{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
585 > \end{split}
586 > \label{eq:19}
587 > \end{equation}
588 > In the last step, the charge density was integrated over the sphere,
589 > yielding a total charge $C_\mathrm{total}$.Equation (\ref{eq:19})
590 > gives the total gradient of the field over a sphere due to the
591 > distribution of the charges.  For quadrupolar fluids the total charge
592 > within a sphere is zero, therefore
593 > $ \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = 0 $.  Hence the quadrupolar
594 > polarization produces zero net gradient of the field inside the
595 > sphere.
596  
167
597   \bibliography{dielectric_new}
598   \end{document}
599   %

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines