ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Dielectric_Supplemental.tex
(Generate patch)

Comparing trunk/multipole/Dielectric_Supplemental.tex (file contents):
Revision 4417 by gezelter, Sun Apr 10 12:57:41 2016 UTC vs.
Revision 4419 by gezelter, Tue Apr 12 20:03:08 2016 UTC

# Line 36 | Line 36 | jcp]{revtex4-1}
36   \usepackage{url}
37   \usepackage{rotating}
38   \usepackage{braket}
39 + \usepackage{array}
40 + \newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
41 + \newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
42 + \newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
43  
44  
45 +
46   %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
47   %\linenumbers\relax % Commence numbering lines
48  
# Line 63 | Line 68 | of Notre Dame, Notre Dame, IN 46556}
68   \date{\today}% It is always \today, today,
69               %  but any date may be explicitly specified
70  
71 + \begin{abstract}
72 +  This document includes useful relationships for computing the
73 +  interactions between fields and field gradients and point multipolar
74 +  representations of molecular electrostatics. We also provide
75 +  explanatory derivations of a number of relationships used in the
76 +  main text. This includes the Boltzmann averages of quadrupole
77 +  orientations, and the interaction of a quadrupole density with the
78 +  self-generated field gradient. This last relationship is assumed to
79 +  be zero in the main text but is explicitly shown to be zero here.
80 + \end{abstract}
81 +
82   \maketitle
83  
84 < This document contains derivations of useful relationships for
85 < electric field gradients and their interactions with point multipoles.
86 < We rely heavily on both the notation and results from Torres del
87 < Castillo and Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo} In
88 < this work, tensors are expressed in Cartesian components, using at
89 < times a dyadic notation. This proves quite useful for our work as we
90 < employ toroidal boundary conditions in our simulations, and these are
91 < easily implemented in Cartesian coordinate systems.
84 > \section{Generating Uniform Field Gradients}
85 > One important task in carrying out the simulations mentioned in the
86 > main text was to generate uniform electric field gradients.  To do
87 > this, we relied heavily on both the notation and results from Torres
88 > del Castillo and Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo}
89 > In this work, tensors were expressed in Cartesian components, using at
90 > times a dyadic notation. This proves quite useful for computer
91 > simulations that make use of toroidal boundary conditions.
92  
93   An alternative formalism uses the theory of angular momentum and
94   spherical harmonics and is common in standard physics texts such as
95 < Jackson,\cite{Jackson98} Morse and Feshbach, and Baym. Because this
96 < approach has its own advantages, relationships are provided below
97 < comparing that terminology to the Cartesian tensor notation.
95 > Jackson,\cite{Jackson98} Morse and Feshbach,\cite{Morse:1946zr} and
96 > Stone.\cite{Stone:1997ly} Because this approach has its own
97 > advantages, relationships are provided below comparing that
98 > terminology to the Cartesian tensor notation.
99  
100   The gradient of the electric field,
101   \begin{equation*}
# Line 100 | Line 117 | written:
117   electrostatic potential that generates a uniform gradient may be
118   written:
119   \begin{align}
120 < \Phi(x, y, z) =\; -g_o & \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
121 < & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z +  \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right) .
120 > \Phi(x, y, z) =\; -\frac{g_o}{2} & \left(\left(a_1b_1 -
121 >                         \frac{cos\psi}{3}\right)\;x^2+\left(a_2b_2
122 >                         - \frac{cos\psi}{3}\right)\;y^2 +
123 >                         \left(a_3b_3 -
124 >                         \frac{cos\psi}{3}\right)\;z^2 \right. \nonumber \\
125 > & + (a_1b_2 + a_2b_1)\; xy + (a_1b_3 + a_3b_1)\; xz + (a_2b_3 + a_3b_2)\; yz \bigg) .
126   \label{eq:appliedPotential}
127   \end{align}
128   Note $\mathbf{a}\cdot\mathbf{a} = \mathbf{b} \cdot \mathbf{b} = 1$,
129   $\mathbf{a} \cdot \mathbf{b}=\cos \psi$, and $g_0$ is the overall
130 < strength of the potential.  
130 > strength of the potential.
131  
132 < An alternative to this notation is to write an electrostatic potential
133 < that generates a uniform gradient using the notation of Morse and
134 < Feshbach,
132 > Taking the gradient of Eq. (\ref{eq:appliedPotential}), we find the
133 > field due to this potential,
134 > \begin{equation}
135 > \mathbf{E} = -\nabla \Phi
136 > =\frac{g_o}{2} \left(\begin{array}{ccc}
137 > 2(a_1 b_1 - \frac{cos\psi}{3})\; x & +\; (a_1 b_2 + a_2 b_1)\; y & +\; (a_1 b_3 + a_3 b_1)\; z \\
138 > (a_2 b_1 + a_1 b_2)\; x & +\; 2(a_2 b_2 - \frac{cos\psi}{3})\; y & +\;  (a_2 b_3 + a_3 b_3)\; z \\
139 > (a_3 b_1 + a_3 b_2)\; x & +\;  (a_3 b_2 + a_2 b_3)\; y & +\; 2(a_3 b_3 - \frac{cos\psi}{3})\; z
140 > \end{array} \right),
141 > \label{eq:CE}
142 > \end{equation}
143 > while the gradient of the electric field in this form,
144 > \begin{equation}
145 > \mathsf{G} = \nabla\mathbf{E}
146 > = \frac{g_o}{2}\left(\begin{array}{ccc}
147 > 2(a_1\; b_1 - \frac{cos\psi}{3}) &  (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
148 > (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\
149 > (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
150 > \end{array} \right),
151 > \label{eq:GC}
152 > \end{equation}  
153 > is uniform over the entire space.  Therefore, to describe a uniform
154 > gradient in this notation, two unit vectors ($\mathbf{a}$ and
155 > $\mathbf{b}$) as well as a potential strength, $g_0$, must be
156 > specified. As expected, this requires five independent parameters.
157 >
158 > The common alternative to the Cartesian notation expresses the
159 > electrostatic potential using the notation of Morse and
160 > Feshbach,\cite{Morse:1946zr}
161   \begin{equation} \label{eq:quad_phi}
162 < \Phi(x,y,z) = - \left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2}
162 > \Phi(x,y,z) = -\left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2}
163   + 3 a_{21}^e \,xz + 3 a_{21}^o \,yz  
164 < + 6a_{22}^e \,xy +  3 a_{22}^o (x^2 - y^2) \right]  .
164 > + 6a_{22}^e \,xy +  3 a_{22}^o (x^2 - y^2) \right].
165   \end{equation}
166   Here we use the standard $(l,m)$ form for the $a_{lm}$ coefficients,
167   with superscript $e$ and $o$ denoting even and odd, respectively.
168   This form makes the functional analogy to ``d'' atomic states
169 < apparent. The gradient of the electric field in this form is:
169 > apparent.
170 >
171 > Applying the gradient operator to Eq. (\ref{eq:quad_phi}) the electric
172 > field due to this potential,
173 > \begin{equation}
174 > \mathbf{E} = -\nabla \Phi
175 > = \left(\begin{array}{ccc}
176 > \left( 6a_{22}^o -a_{20} \right)\; x &+\; 6a_{22}^e\; y &+\; 3a_{21}^e\;  z  \\
177 > 6a_{22}^e\; x & -\; (a_{20} + 6a_{22}^o)\; y & +\; 3a_{21}^o\; z \\
178 > 3a_{21}^e\; x & +\; 3a_{21}^o\; y & +\; 2a_{20}\; z
179 > \end{array} \right),
180 > \label{eq:MFE}
181 > \end{equation}
182 > while the gradient of the electric field in this form is:
183   \begin{equation} \label{eq:grad_e2}
184   \mathsf{G} =
185   \begin{pmatrix}
# Line 128 | Line 188 | which can be factored as
188   3a_{21}^e  &  3a_{21}^o & 2a_{20} \\
189   \end{pmatrix} \\
190   \end{equation}
191 < which can be factored as
191 > which is also uniform over the entire space.  This form for the
192 > gradient can be factored as
193   \begin{gather}
194   \begin{aligned}
195   \mathsf{G}  = a_{20}
# Line 165 | Line 226 | symmetric traceless tensors of rank 2.  The trace corr
226   \label{eq:intro_tensors}
227   \end{gather}
228   The five matrices in the expression above represent five different
229 < symmetric traceless tensors of rank 2.  The trace corresponds to
169 < $\nabla \cdot \mathbf{E} = 0$, consistent with being in a charge-free
170 < region.  Using the Cartesian notation of
171 < Eq. (\ref{eq:appliedPotential}), this tensor is written:
172 < \begin{equation}
173 < \mathsf{G} =\nabla\bf{E}
174 < = \frac{g_o}{2}\left(\begin{array}{ccc}
175 < 2(a_1\; b_1 - \frac{cos\psi}{3}) &  (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
176 < (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\
177 < (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
178 < \end{array} \right).
179 < \label{eq:GC}
180 < \end{equation}
229 > symmetric traceless tensors of rank 2.
230  
231 < It is useful to find vectors $\mathbf a$ and $\mathbf b$ that generate
232 < the five types of tensors shown in Eq. (\ref{eq:intro_tensors}).  If
233 < the two vectors are co-linear, e.g., $\psi=0$, $\mathbf{a}=(0,0,1)$ and
234 < $\mathbf{b}=(0,0,1)$, then
231 > It is useful to find the Cartesian vectors $\mathbf a$ and $\mathbf b$
232 > that generate the five types of tensors shown in
233 > Eq. (\ref{eq:intro_tensors}).  If the two vectors are co-linear, e.g.,
234 > $\psi=0$, $\mathbf{a}=(0,0,1)$ and $\mathbf{b}=(0,0,1)$, then
235   \begin{equation*}
236   \mathsf{G} = \frac{g_0}{3}
237   \begin{pmatrix}
# Line 216 | Line 265 | Using Eq. (\ref{eq:quad_phi}) the electric field is wr
265   \end{equation*}
266   The pattern is straightforward to continue for the other symmetries.
267  
268 < Using Eq. (\ref{eq:quad_phi}) the electric field is written:
269 < \begin{equation}
270 < \mathbf{E}
222 < = \left(\begin{array}{ccc}
223 < \left(-a_{20} + 6a_{22}^o \right) x + 6a_{22}^e y + 3a_{21}^e  z  \\
224 < 6a_{22}^e x+(-a_{20} - 6a_{22}^o) y + 3a_{21}^e z \\
225 < 3a_{21}^e x +3a_{21}^o y + 2a_{20} z
226 < \end{array} \right).
227 < \label{eq:MFE}
228 < \end{equation}
229 < while using Eq. (\ref{eq:appliedPotential}), we find:
230 < \begin{equation}
231 < \mathbf{E}
232 < =\frac{g_o}{2} \left(\begin{array}{ccc}
233 < 2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+  (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
234 < (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y +  (a_2\; b_3 \;+ a_3\; b_3)\;z \\
235 < (a_3\; b_1 \;+ a_3\; b_2)\;x +  (a_3\; b_2 \;+ a_2\; b_3)\;y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
236 < \end{array} \right).
237 < \label{eq:CE}
238 < \end{equation}
239 < We find the notation of Ref. \onlinecite{Torres-del-Castillo:2006uo}
240 < to be helpful when creating specific types of constant gradient
241 < electric fields in simulations. For this reason,
268 > We find the notation of Ref. \onlinecite{Torres-del-Castillo:2006uo}
269 > helpful when creating specific types of constant gradient electric
270 > fields in simulations. For this reason,
271   Eqs. (\ref{eq:appliedPotential}), (\ref{eq:GC}), and (\ref{eq:CE}) are
272 < used in our code.
272 > implemented in our code.  In the simulations using constant applied
273 > gradients that are mentioned in the main text, we utilized a field
274 > with the $a_{22}^e$ symmetry using vectors, $\mathbf{a}= (1, 0, 0)$
275 > and $\mathbf{b} = (0,1,0)$.
276  
277   \section{Point-multipolar interactions with a spatially-varying electric field}
278  
# Line 259 | Line 291 | tensors are given using Green indices, using the Einst
291   \end{align}
292   where $\mathbf{r}_k$ is the local coordinate system for the object
293   (usually the center of mass of object $a$).  Components of vectors and
294 < tensors are given using Green indices, using the Einstein repeated
295 < summation notation. Note that the definition of the primitive
296 < quadrupole here differs from the standard traceless form, and contains
297 < an additional Taylor-series based factor of $1/2$.  In Ref.
298 < \onlinecite{PaperI}, we derived the forces and torques each object
299 < exerts on the other objects in the system.
294 > tensors are given using the Einstein repeated summation notation. Note
295 > that the definition of the primitive quadrupole here differs from the
296 > standard traceless form, and contains an additional Taylor-series
297 > based factor of $1/2$. In Ref.  \onlinecite{PaperI}, we derived the
298 > forces and torques each object exerts on the other objects in the
299 > system.
300  
301   Here we must also consider an external electric field that varies in
302   space: $\mathbf E(\mathbf r)$.  Each of the local charges $q_k$ in
# Line 277 | Line 309 | Note that once one shrinks object $a$ to point size, t
309   + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0}  r_{k \delta}
310   r_{k \varepsilon} + ...
311   \end{equation}
312 < Note that once one shrinks object $a$ to point size, the ${E}_\gamma$
313 < terms are all evaluated at the center of the object (now a
314 < point). Thus later the ${E}_\gamma$ terms can be written using the
315 < same global origin for all objects $a, b, c, ...$ in the system. The
316 < force exerted on object $a$ by the electric field is given by,
285 <
312 > Note that if one shrinks object $a$ to a single point, the
313 > ${E}_\gamma$ terms are all evaluated at the center of the object (now
314 > a point). Thus later the ${E}_\gamma$ terms can be written using the
315 > same (molecular) origin for all point charges in the object. The force
316 > exerted on object $a$ by the electric field is given by,\cite{Raab:2004ve}
317   \begin{align}
318   F^a_\gamma = \sum_{k \textrm{~in~} a} E_\gamma(\mathbf{r}_k) &=  \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
319   + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
# Line 291 | Line 322 | Thus in terms of the global origin $\mathbf{r}$, ${F}_
322   + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
323   ...
324   \end{align}
325 < Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
325 > Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
326    
327   Similarly, the torque exerted by the field on $a$ can be expressed as
328   \begin{align}
# Line 323 | Line 354 | The results has been summarized in Table I.
354   \begin{equation}
355   U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ...
356   \end{equation}
357 < The results has been summarized in Table I.
357 > These results have been summarized in Table \ref{tab:UFT}.
358  
359   \begin{table}
360   \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
361 <  $(\mathbf{\tau})$ expressions for a multipolar site $\mathrm{r}$ in an
362 <  electric field, $\mathbf{E}(\mathbf{r})$.
363 < \label{tab:UFT}}
364 < \begin{tabular}{r|ccc}
361 >  $(\mathbf{\tau})$ expressions for a multipolar site at $\mathbf{r}$ in an
362 >  electric field, $\mathbf{E}(\mathbf{r})$ using the definitions of the multipoles in Eqs. (\ref{eq:charge}), (\ref{eq:dipole}) and (\ref{eq:quadrupole}).  
363 >  \label{tab:UFT}}
364 > \begin{tabular}{r|C{3cm}C{3cm}C{3cm}}
365    & Charge & Dipole & Quadrupole \\ \hline
366   $U(\mathbf{r})$ &  $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
367   $\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ &  $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
# Line 338 | Line 369 | $\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \ma
369   \end{tabular}
370   \end{table}
371  
341
372   \section{Boltzmann averages for orientational polarization}
373 < The dielectric properties of the system is mainly arise from two
374 < different ways: i) the applied field distort the charge distributions
375 < so it produces an induced multipolar moment in each molecule; and ii)
376 < the applied field tends to line up originally randomly oriented
347 < molecular moment towards the direction of the applied field. In this
348 < study, we basically focus on the orientational contribution in the
349 < dielectric properties. If we consider a system of molecules in the
350 < presence of external field perturbation, the perturbation experienced
351 < by any molecule will not be only due to external field or field
352 < gradient but also due to the field or field gradient produced by the
353 < all other molecules in the system. In the following subsections
373 > If we consider a collection of molecules in the presence of external
374 > field, the perturbation experienced by any one molecule will include
375 > contributions to the field or field gradient produced by the all other
376 > molecules in the system. In subsections
377   \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad},
378 < we will discuss about the molecular polarization only due to external
379 < field perturbation. The contribution of the field or field gradient
380 < due to all other molecules will be taken into account while
358 < calculating correction factor in the paper.
378 > we discuss the molecular polarization due solely to external field
379 > perturbations.  This illustrates the origins of the polarizability
380 > equations (Eqs. 6, 20, and 21) in the main text.
381  
382   \subsection{Dipoles}
383   \label{subsec:boltzAverage-Dipole}
384   Consider a system of molecules, each with permanent dipole moment
385 < $p_o$. In the absense of external field, thermal agitation orients the
386 < dipoles randomly, reducing the system moment to zero.  External fields
387 < will tend to line up the dipoles in the direction of applied field.
388 < Here we have considered net field from all other molecules is
389 < considered to be zero.  Therefore the total Hamiltonian of each
390 < molecule is,\cite{Jackson98}
385 > $p_o$. In the absense of an external field, thermal agitation orients
386 > the dipoles randomly, and the system moment, $\mathbf{P}$, is zero.
387 > External fields will line up the dipoles in the direction of applied
388 > field.  Here we consider the net field from all other molecules to be
389 > zero.  Therefore the total Hamiltonian acting on each molecule
390 > is,\cite{Jackson98}
391   \begin{equation}
392 < H = H_o - \mathbf{p_o}\cdot \mathbf{E},
392 > H = H_o - \mathbf{p}_o \cdot \mathbf{E},
393   \end{equation}
394   where $H_o$ is a function of the internal coordinates of the molecule.
395 < The Boltzmann average of the dipole moment is given by,
395 > The Boltzmann average of the dipole moment in the direction of the
396 > field is given by,
397   \begin{equation}
398 < \braket{p_{mol}} = \frac{\displaystyle\int d\Omega\; p_o\; cos\theta\;  e^{\frac{p_oE\; cos\theta}{k_B T}}}{\displaystyle\int d\Omega\; e^{\frac{p_oE\;cos\theta}{k_B T}}},
398 > \langle p_{mol} \rangle = \frac{\displaystyle\int p_o \cos\theta
399 >  e^{~p_o E \cos\theta /k_B T}\; d\Omega}{\displaystyle\int  e^{~p_o E \cos\theta/k_B
400 >    T}\; d\Omega},
401   \end{equation}
402 < where $\bf{E}$ is selected along z-axis. If we consider that the
403 < applied field is small, \textit{i.e.} $\frac{p_oE\; cos\theta}{k_B T} << 1$,
404 < \begin{equation}
405 < \braket{p_{mol}}  \approx \frac{1}{3}\frac{{p_o}^2}{k_B T}E,
406 < \end{equation}
407 < where $ \alpha_p = \frac{1}{3}\frac{{p_o}^2}{k_B T}$ is a molecular
402 > where the $z$-axis is taken in the direction of the applied field,
403 > $\bf{E}$ and
404 > $\int d\Omega = \int_0^\pi \sin\theta\; d\theta \int_0^{2\pi} d\phi
405 > \int_0^{2\pi} d\psi$
406 > is an integration over Euler angles describing the orientation of the
407 > molecule.
408 >
409 > If the external fields are small, \textit{i.e.}
410 > $p_oE \cos\theta / k_B T << 1$,
411 > \begin{equation}
412 > \langle p_{mol} \rangle \approx \frac{{p_o}^2}{3 k_B T}E,
413 > \end{equation}
414 > where $ \alpha_p = \frac{{p_o}^2}{3 k_B T}$ is the molecular
415   polarizability. The orientational polarization depends inversely on
416 < the temperature and applied field must overcome the thermal agitation.
416 > the temperature as the applied field must overcome thermal agitation
417 > to orient the dipoles.
418  
419   \subsection{Quadrupoles}
420   \label{subsec:boltzAverage-Quad}
421 < Consider a system of molecules with permanent quadrupole moment
422 < $q_{\alpha\beta}$. The average quadrupole moment at temperature T in
423 < the presence of uniform applied field gradient is given
424 < by,\cite{AduGyamfi78, AduGyamfi81}
421 > If instead, our system consists of molecules with permanent
422 > \textit{quadrupole} tensor $q_{\alpha\beta}$. The average quadrupole
423 > at temperature $T$ in the presence of uniform applied field gradient
424 > is given by,\cite{AduGyamfi78, AduGyamfi81}
425   \begin{equation}
426 < \braket{q_{\alpha\beta}} \;=\; \frac{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}} \;=\; \frac{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
426 > \langle q_{\alpha\beta} \rangle \;=\; \frac{\displaystyle\int
427 >  q_{\alpha\beta}\; e^{-H/k_B T}\; d\Omega}{\displaystyle\int
428 >  e^{-H/k_B T}\; d\Omega} \;=\; \frac{\displaystyle\int
429 >  q_{\alpha\beta}\; e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B T}\;
430 >  d\Omega}{\displaystyle\int  e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B
431 >    T}\; d\Omega },
432   \label{boltzQuad}
433   \end{equation}
434 < where $\int d\Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
435 < sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
436 < angles, $ H = H_o -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
437 < a quadrupole in the gradient of the  
438 < applied field and $ H_o$ is a function of internal coordinates of the molecule. The energy and quadrupole moment can be transformed into body frame using following relation,
439 < \begin{equation}
440 < \begin{split}
441 < &q_{\alpha\beta} = \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
442 < &H = H_o - q:{\nabla}\mathbf{E} = H_o - q_{\mu\nu}\;\partial_\nu E_\mu = H_o -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu.
443 < \end{split}
444 < \label{energyQuad}
445 < \end{equation}
434 > where $H = H_o - q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of a
435 > quadrupole in the gradient of the applied field and $H_o$ is a
436 > function of internal coordinates of the molecule. The energy and
437 > quadrupole moment can be transformed into the body frame using a
438 > rotation matrix $\mathsf{\eta}^{-1}$,
439 > \begin{align}
440 > q_{\alpha\beta} &= \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
441 > H &= H_o - q:{\nabla}\mathbf{E} \\
442 >  &= H_o - q_{\mu\nu}\;\partial_\nu E_\mu  \\
443 >  &= H_o
444 >    -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu
445 >    E_\mu. \label{energyQuad}
446 > \end{align}
447   Here the starred tensors are the components in the body fixed
448 < frame. Substituting equation (\ref{energyQuad}) in the equation (\ref{boltzQuad})
449 < and taking linear terms in the expansion we get,
448 > frame. Substituting equation (\ref{energyQuad}) in the equation
449 > (\ref{boltzQuad}) and taking linear terms in the expansion we obtain,
450   \begin{equation}
451 < \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)},
451 > \braket{q_{\alpha\beta}} = \frac{\displaystyle \int q_{\alpha\beta} \left(1 +
452 >    \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu
453 >      E_\mu }{k_B T}\right)\;  d\Omega}{\displaystyle \int \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)\; d\Omega}.
454   \end{equation}
455 < where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms
456 < the body fixed co-ordinates to the space co-ordinates,
457 < \[\eta_{\alpha\alpha'}
458 < = \left(\begin{array}{ccc}
459 < cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
460 < cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
461 < sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
462 < \end{array} \right).\]
463 < Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
423 < and $8 \pi^2 /3\;{\nabla}.\mathbf{E}\; Tr(q^*) $ respectively. The
424 < second term vanishes for charge free space, ${\nabla}.\mathbf{E} \; = \; 0$. Similarly integration of the
425 < 1st term in the numerator produces
426 < $8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
427 < $8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
428 < {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
429 < if ${\nabla}.\mathbf{E} \; = \; 0$,
430 < $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
431 < ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
432 < Boltzmann average of a quadrupole moment can be written as,
455 > Recall that $\eta_{\alpha\alpha'}$ is the inverse of the rotation
456 > matrix that transforms the body fixed co-ordinates to the space
457 > co-ordinates.
458 > % \[\eta_{\alpha\alpha'}
459 > % = \left(\begin{array}{ccc}
460 > % cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
461 > % cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
462 > % sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
463 > % \end{array} \right).\]
464  
465 + Integration of the first and second terms in the denominator gives
466 + $8 \pi^2$ and
467 + $8 \pi^2 ({\nabla} \cdot \mathbf{E}) \mathrm{Tr}(q^*) / 3 $
468 + respectively. The second term vanishes for charge free space (where
469 + ${\nabla} \cdot \mathbf{E}=0$). Similarly, integration of the first
470 + term in the numerator produces
471 + $8 \pi^2 \delta_{\alpha\beta} \mathrm{Tr}(q^*) / 3$ while the second
472 + produces
473 + $8 \pi^2 (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
474 + {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta /
475 + 15 k_B T $.
476 + Therefore the Boltzmann average of a quadrupole moment can be written
477 + as,
478   \begin{equation}
479 < \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
479 > \langle q_{\alpha\beta} \rangle =  \frac{1}{3} \mathrm{Tr}(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
480   \end{equation}
481 < where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupole polarizablity  and  ${\bar{q_o}}^2=
482 < 3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule.
481 > where $\alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular
482 > quadrupole polarizablity and
483 > ${\bar{q_o}}^2=
484 > 3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$
485 > is the square of the net quadrupole moment of a molecule.
486  
440 % \section{External application of a uniform field gradient}
441 % \label{Ap:fieldOrGradient}
442
443 % To satisfy the condition $ \nabla \cdot \mathbf{E} = 0 $, within the box of molecules we have taken electrostatic potential in the following form
444 % \begin{equation}
445 % \begin{split}
446 % \phi(x, y, z) =\; &-g_o \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
447 % & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z +  \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right),
448 % \end{split}
449 % \label{eq:appliedPotential}
450 % \end{equation}
451 % where $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ are basis vectors  determine coefficients in x, y, and z direction. And $g_o$ and $\psi$ are overall strength of the potential and angle between basis vectors respectively. The electric field derived from the above potential is,
452 % \[\mathbf{E}
453 % = \frac{g_o}{2} \left(\begin{array}{ccc}
454 % 2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+  (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
455 %  (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y +  (a_2\; b_3 \;+ a_3\; b_2)\;z \\
456 % (a_3\; b_1 \;+ a_3\; b_2)\;x +  (a_3\; b_2 \;+ a_2\; b_3)y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
457 % \end{array} \right).\]
458 % The gradient of the applied field derived from the potential can be written in the following form,
459 % \[\nabla\mathbf{E}
460 % = \frac{g_o}{2}\left(\begin{array}{ccc}
461 % 2(a_1\; b_1 - \frac{cos\psi}{3}) &  (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
462 %  (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_2) \\
463 % (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
464 % \end{array} \right).\]
465
466
467
487   \section{Gradient of the field due to quadrupolar polarization}
488   \label{singularQuad}
489 < In this section, we will discuss the gradient of the field produced by
490 < quadrupolar polarization. For this purpose, we consider a distribution
491 < of charge ${\rho}(\mathbf r)$ which gives rise to an electric field
492 < $\mathbf{E}(\mathbf r)$ and gradient of the field ${\nabla} \mathbf{E}(\mathbf r)$
493 < throughout space. The total gradient of the electric field over volume
494 < due to the all charges within the sphere of radius $R$ is given by
495 < (cf. Jackson equation 4.14):
489 > In section IV.C of the main text, we stated that for quadrupolar
490 > fluids, the self-contribution to the field gradient vanishes at the
491 > singularity. In this section, we prove this statement.  For this
492 > purpose, we consider a distribution of charge $\rho(\mathbf{r})$ which
493 > gives rise to an electric field $\mathbf{E}(\mathbf{r})$ and gradient
494 > of the field $\nabla\mathbf{E}(\mathbf{r})$ throughout space. The
495 > gradient of the electric field over volume due to the charges within
496 > the sphere of radius $R$ is given by (cf. Ref. \onlinecite{Jackson98},
497 > equation 4.14):
498   \begin{equation}
499 < \int_{r<R} {\nabla}\mathbf{E}\;d^3r = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega
499 > \int_{r<R} \nabla\mathbf{E} d\mathbf{r} = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega
500   \label{eq:8}
501   \end{equation}
502   where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
503   of the surface of the sphere,
483 $\hat{n} = sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} +
484 cos[\theta]\hat{z}$
485 in spherical coordinates.  For the charge density ${\rho}(\mathbf r')$, the
486 total gradient of the electric field can be written as, ~\cite{Jackson98}
504   \begin{equation}
505 < \int_{r<R} {\nabla}\mathbf {E}\; d^3r=-\int_{r=R} R^2\; {\nabla}\Phi\; \hat{n}\; d\Omega  =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int \frac{\rho(\mathbf r')}{|\mathbf{r}-\mathbf{r}'|}\;d^3r'\right) \hat{n}\; d\Omega
505 > \hat{n} = \sin\theta\cos\phi\; \hat{x} + \sin\theta\sin\phi\; \hat{y} +
506 > \cos\theta\; \hat{z}
507 > \end{equation}
508 > in spherical coordinates.  For the charge density $\rho(\mathbf{r}')$, the
509 > total gradient of the electric field can be written as,\cite{Jackson98}
510 > \begin{equation}
511 > \int_{r<R} {\nabla}\mathbf {E}\; d\mathbf{r}=-\int_{r=R} R^2\; {\nabla}\Phi\; \hat{n}\; d\Omega  =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int \frac{\rho(\mathbf r')}{|\mathbf{r}-\mathbf{r}'|}\;d\mathbf{r}'\right) \hat{n}\; d\Omega
512   \label{eq:9}
513   \end{equation}
514   The radial function in the equation (\ref{eq:9}) can be expressed in
# Line 497 | Line 520 | If the sphere completely encloses the charge density t
520   If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
521   \begin{equation}
522   \begin{split}
523 < \int_{r<R} {\nabla}\mathbf{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\
524 < &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r
523 > \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d\mathbf{r}'\right) \hat{n}\; d\Omega \\
524 > &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d\mathbf{r}
525   '
526   \end{split}
527   \label{eq:11}
# Line 512 | Line 535 | Using equation (\ref{eq:12}) we get,
535   \end{split}
536   \label{eq:12}
537   \end{equation}
538 < Using equation (\ref{eq:12}) we get,
538 > where $Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical
539 > harmonic.\cite{Arfkan} Using equation (\ref{eq:12}) we get,
540   \begin{equation}
541   {\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
542   \label{eq:13}
543   \end{equation}
544 < where $ Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical harmonics \cite{Arfkan}. Using Clebsch-Gorden coefficients $C(l+1, 1, l|m_1,m_2,m) $, equation \ref{eq:14} can be written in spherical harmonics,
544 > Using Clebsch-Gordan coefficients $C(l+1,1,l|m_1,m_2,m)$, the vector
545 > spherical harmonics can be written in terms of spherical harmonics,
546   \begin{equation}
547 < Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}.
547 > Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; Y_{l+1}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}.
548   \label{eq:14}
549   \end{equation}
550   Here $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
# Line 530 | Line 555 | The normal vector $\hat{n} $ is then expressed in term
555   \end{equation}
556   The normal vector $\hat{n} $ is then expressed in terms of spherical tensor of rank 1 as shown in below,
557   \begin{equation}
558 < \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right).
558 > \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 - Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right).
559   \label{eq:16}
560   \end{equation}
561   The surface integral of the product of $\hat{n}$ and
562 < ${Y_{l+1}}^{m_1}(\theta, \phi)$ gives,
562 > $Y_{l+1}^{m_1}(\theta, \phi)$ gives,
563   \begin{equation}
564   \begin{split}
565 < \int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
566 < &=  \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
565 > \int \hat{n}\;Y_{l+1}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 -Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\
566 > &=  \int \sqrt{\frac{4\pi}{3}}\left({Y_1^{1}}^* {\hat{e}}_1 +{Y_1^{-1}}^* {\hat{e}}_{-1} + {Y_1^{0}}^* {\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\
567   &=   \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
568   \end{split}
569   \label{eq:17}
570   \end{equation}
571 < where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and
572 < $ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega =
571 > where $Y_{l}^{-m} = (-1)^m\;{Y_{l}^{m}}^* $ and
572 > $ \int {Y_{l}^{m}}^* Y_{l'}^{m'}\;d\Omega =
573   \delta_{ll'}\delta_{mm'} $.
574   Non-vanishing values of equation \ref{eq:17} require $l = 0$,
575   therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
# Line 553 | Line 578 | modified,
578   modified,
579   \begin{equation}
580   \begin{split}
581 < \int_{r<R} {\nabla}\mathbf{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\  &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
582 < 1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r' \\
583 < &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
584 < &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
581 > \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\  &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
582 > 1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d\mathbf{r}' \\
583 > &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d\mathbf{r}'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
584 > &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_\mathrm{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
585   \end{split}
586   \label{eq:19}
587   \end{equation}
588 < In the last step, the charge density was integrated over the sphere, yielding a total charge $\mathrm{C_total}$.Equation (\ref{eq:19}) gives the total gradient of the field over a sphere due to the distribution of the charges.
589 < For quadrupolar fluids the total charge within a sphere is zero, therefore
590 < $ \int_{r<R} {\nabla}\mathbf{E}\;d^3r = 0 $.  Hence the quadrupolar
588 > In the last step, the charge density was integrated over the sphere,
589 > yielding a total charge $C_\mathrm{total}$.Equation (\ref{eq:19})
590 > gives the total gradient of the field over a sphere due to the
591 > distribution of the charges.  For quadrupolar fluids the total charge
592 > within a sphere is zero, therefore
593 > $ \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = 0 $.  Hence the quadrupolar
594   polarization produces zero net gradient of the field inside the
595   sphere.
596  
569
597   \bibliography{dielectric_new}
598   \end{document}
599   %

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines